K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

a.

\(Q=x^2+2y^2+2xy-2y+2015=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+2014=\left(x+y\right)^2+\left(x-1\right)^2+2014\ge2014\)

''='' xảy ra khi: \(\left\{{}\begin{matrix}x=-y\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy \(Q_{min}=2014\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b. vào câu hỏi tt hoặc sớt gg sẽ có

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

12 tháng 5 2017

a) Áp dụng bất đẳng thức Schur với \(r=1\)

\(\Rightarrow a^3+b^3+c^3+3abc\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

\(\Rightarrow3abc\ge a^2b+ca^2-a^3+ab^2+b^2c-b^3+c^2a+bc^2-c^3\)

\(\Rightarrow3abc\ge a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

b) Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^3}{b^2}+b+b\ge3\sqrt[3]{\dfrac{a^3}{b^2}.b^2}=3a\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{c^2}+c+c\ge3b\\\dfrac{c^3}{a^2}+a+a\ge3c\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}+2\left(a+b+c\right)\ge3\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

c) Ta có \(abc=ab+bc+ca\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+2b+3c}=\dfrac{1}{a+c+2\left(b+c\right)}\le\dfrac{1}{4}\left[\dfrac{1}{a+c}+\dfrac{1}{2\left(b+c\right)}\right]\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+3a}\le\dfrac{1}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{2\left(a+c\right)}\right]\\\dfrac{1}{c+2a+3b}\le\dfrac{1}{4}\left[\dfrac{1}{b+c}+\dfrac{1}{2\left(a+b\right)}\right]\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left[\dfrac{3}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\right]\)

\(\Rightarrow VT\le\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\) ( 1 )

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{16}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\le\dfrac{3}{16}\)

\(\Rightarrow\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{3}{16}\) ( đpcm )

12 tháng 5 2017

mk hỏi lâu rồi bây giờ bạn mới trả lời thì có đc GP k nhỉ

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

câu 1: 1. rút gọn rồi tính giá trị biểu thức sau: ( 2x + y )( y - 2x ) + 4x2 tại x = -2018 và y = 10 2. phân thức các đa thức sau thành nhân tử a) xy + 11x b) x2 + 4y2 + 4xy - 16 câu 2: 1. tìm x biết: a) 2x2 - 6x = 0 b) (x+3)(x2-3x+9)-x(x2-2)=15 2. tìm số nguyên a sao cho x3 + 3x2 - 8x + a -2038 chia hêt cho x + 2. câu 3: rút gọn các biểu thức sau: 1. \(\dfrac{6x+4}{3x}:\dfrac{2y}{3x}\) 2....
Đọc tiếp

câu 1:

1. rút gọn rồi tính giá trị biểu thức sau:

( 2x + y )( y - 2x ) + 4x2 tại x = -2018 và y = 10

2. phân thức các đa thức sau thành nhân tử

a) xy + 11x

b) x2 + 4y2 + 4xy - 16

câu 2:

1. tìm x biết:

a) 2x2 - 6x = 0

b) (x+3)(x2-3x+9)-x(x2-2)=15

2. tìm số nguyên a sao cho x3 + 3x2 - 8x + a -2038 chia hêt cho x + 2.

câu 3: rút gọn các biểu thức sau:

1. \(\dfrac{6x+4}{3x}:\dfrac{2y}{3x}\)

2. \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

câu 4: cho tam giác ABC, M,N lần lượt là tđ của AB và AC. gọi D là điểm đối xứng với điểm M qua N.

a) tứ giác AMCD là hình gì? vì sao?

tìm điều kiện của tam giác ABC để tứ giác AMCD là hcn.

b) c/m tứ giác BCDM là hbh.

câu 5:

1. cho x,y thỏa mãn 2x2 + y2 +9 = 6x + 2xy

tính giá trị biểu thức \(A=x^{2017}y^{2018}-x^{2018}y^{2017}+\dfrac{1}{9}xy\)

2. cho 2 số a và b thỏa mãn \(\dfrac{a+b}{2}=1\)

tính giá trị biểu thức \(\dfrac{2011}{2a^2+2b^2+2008}\)

CACCAU GIÚP TỚ NHÉ!! TỚ ĐANG RẤT CẦN ĐÂY!!! GẤP LẮM LUN!! MONG CÓ AI GIÚP ĐC

2
4 tháng 1 2018

Câu 1:

1,\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=2xy-4x^2+y^2-2xy+4x^2\)

\(=y^2\)

Vì giá trị biểu thức không phụ thuộc x nên

\(\Rightarrow\) Thay \(y=10\) vào biểu thức,ta có:

\(10^2=100\)

2.

a,\(xy+11x=x\left(y+11\right)\)

b,\(x^2+4y^2+4xy-16\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

Câu 2:

1,

a,\(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy...

b,\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-2\right)=15\)

\(\Leftrightarrow\left(x^3+27\right)-\left(x^3-2x\right)=15\)

\(\Leftrightarrow x^3+27-x^3+2x=15\)

\(\Leftrightarrow27+2x=15\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

Câu 3:

1.\(\dfrac{6x+4}{3x}:\dfrac{2y}{3x}\)

\(=\dfrac{6x+4}{3x}.\dfrac{3x}{2y}\)

\(=\dfrac{6x+4}{2y}\)

\(=\dfrac{2\left(3x+2\right)}{2y}=\dfrac{3x+2}{y}\)

2.\(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}-\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}:\dfrac{2x-2}{x}\)

\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}:\dfrac{2x-2}{x}\)

\(=\dfrac{-6}{x}:\dfrac{2x-2}{x}\)

\(=\dfrac{-6x}{\left(2x-2\right)x}\)

\(=\dfrac{-6}{2\left(x-2\right)}=\dfrac{-3}{x-2}\)

4 tháng 1 2018

câu 4

Hình bn tự vẽ

a) có AN=NC

MN=ND

mà AC và MD là 2 đường chéo của tứ giác ADCM

==> Tứ giác ADCM là hình bình hành ( dấu hiệu 5)

b) Gỉa sử tứ giác ADCM là hình chữ nhật

==> AC=MD vì là 2 đg chéo HCN (1)

mặt khác có M là trung điểm của AB

N là trung điểm của AC

==>MNlà đường trung bình của tam giác ABC

==> MN song song và = \(\dfrac{1}{2}\) BC

mà MN=ND ==> MN+ND=MD

==>MD song song và = BC(2)

Từ (1) và (2) ==> AC=BC

==>Tam giác ACB cân tại C

Vậy tam giác ABC cân tại C để tứ giác ADCM là HCN

c) theo câu b có MD song song và = BC

==> tứ giác MDCB là hình bình hành ( đpcm)

26 tháng 6 2018

2.

a. Ta có: x + y = 5 ⇒ x = 5 - y

Thay vào A ta được:

\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)

\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)

\(A=75-100=-25\)

b. Ta có: x - y = 7 ⇒ x = 7 + y

Thay x = 7 + y vào A ta được:

\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)

\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)

\(A=100\)

c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y

Thay vào A ta có:

\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)

\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)

\(A=16\)

5 tháng 3 2017

mik làm câu 1 nhé

để biểu thức nhận giá trị nguyên thì x2+2x+12 chia hết cho x-5 ( 1)

Mà x-5 chia hết cho x-5 => x(x-5) chia hết cho x-5

hay x2-5x chia hết cho x-5 (2)

lấy (1)trừ (2) ta được

x2+2x+12 -x2+5x chia hết cho x-5

hay 7x+12 chia hết cho x-5

=> 7(x-5)+47 chia hết cho x-5

=>47 chia hết cho x-5

=> x-5 thuộc ước nguyên của 47

đến đây bạn tự làm tiếp nhé !!

5 tháng 3 2017

vòng bn vậy bn