Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a, A=15-|x+1|
Co: |x+1|> hoac = 0 voi moi x.
=>15-|x+1|< hoac = 15 vs moi x.
MAX A=15 khi |x+1|=0
=>x+1=0
x=-1.
b,Co: |x-2|> hoac bang 0.
=>18+|x-2|> hoac bang 18.
Min B=18 khi |x+2|=0
=>x+2=0
x=-2
Nho k cho mk nhe
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
|x+1|> hoặc = 0 với mọi x
suy ra |x+1|+5 > hoặc = 5 với mọi x
suy ra Amin=5 khi |x+1|=0
suy ra x+1=0
suy ra x = -1
vậy gtnn của A là 5 khi x=-1
bn nên sử dụng dấu suy ra và dấu lớn hơn hoặc vì mình ko biết đánh dấu . câu b bn làm tương tự vì x^2 cũng lớn hơn hoặc bằng 0
\(M=\left|\frac{1}{3}-x\right|+5\ge5\forall x\)
Dấu ''='' xảy ra khi x = 1/3
Vậy GTNN của M bằng 5 tại x = 1/3
\(N=-\left|x+\frac{2}{3}\right|+2\le2\forall x\)
Dấu ''='' xảy ra khi x = -2/3
Vậy GTLN của N bằng 2 tại x = -2/3
tìm giá trị nhỏ nhất của M=5+|1/3-x|
Vì ∣∣∣13−x∣∣∣≥0|13−x|≥0 với mọi x (Giá trị tuyệt đối của một số luôn không âm)
Nên A=5+∣∣∣13−x∣∣∣≥5A=5+|13−x|≥5 với mọi x
Ta có: A=5⇔∣∣∣13−x∣∣∣=0⇔x=13A=5⇔|13−x|=0⇔x=13
Vậy Amin=5Amin=5 với x = 13
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
a/ Ta có : \(\left|x-3\right|\ge0\)
\(\Leftrightarrow5-\left|x-3\right|\le5\)
Dấu "=" xảy ra khi :
\(\left|x-3\right|=0\Leftrightarrow x=3\)
Vậy ...
b/ \(\left|2+x\right|\ge0\)
\(15+\left|2+x\right|\ge15\)
Dấu "=" xảy ra khi :
\(\left|2+x\right|=0\Leftrightarrow x=-2\)
Vậy ...
Ta có: \(\left|x-3\right|\ge0\Rightarrow5-\left|x-3\right|\le5-0=5\)
\(\Rightarrow Max\left(5-\left|x-3\right|\right)=5\Leftrightarrow x=3\)
Ta có: \(\left|2+x\right|\ge0\Rightarrow15+\left|2+x\right|\ge15+0=15\)
\(\Rightarrow Min\left(15+\left|2+x\right|\right)=15\Leftrightarrow x=-2\)