Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
2)không.Vì hiệu của 2 số là 1 số lẻ nên số trừ phải là số lẻ hoặc chẵn nhưng trong trường hợp này số trừ lẻ thì số bị trừ chẵn mà SBT là SNT nên SBT=2( vô lý vì SBT luôn >2014)
còn nếu số trừ chẵn thì số trừ =2 SBT=2015( là hợp số)
1)C=3^210
C=3^200*3^10
D=2^310=
D=2^300*2^10
Mà 3^200=(3^2)^100=9^100
2^300=(2^3)^100=8^100
nên 3^200>2^300
Mà 3^10>2^10
Nên 3^200*3^10>2^300*2^10
C>D
3)Gọi số số hạng là n
ta có
A=1-5+9-13+17-21+25-...
A=1+4+4+4...=2013(có n/2-1 số 4)
A=1+4*(n/2-1)=2013
A=1+2*n-4=2013
1+2*n=2017
2*n=2016
n=1008
số cuối là 4029(tui làm lụi đó hông bít có đúng hk)
Toán lớp 6 thì có bạn ơi.
a) Ta có: 3=1.3=(-1).(-3)
TH1: x+1=1 => x=0 và xy-1=3 => 0y=4.( vô lí)=> loại
TH2: x+1=3 =>x=2 và xy-1=1 => xy=2 => 2y=2 => y=1
TH3: x+1= -1 => x=-2 và xy-1= -3 => xy= -2 => -2y=-2 => y=1
TH4: x+1= -3 => x=-4 và xy-1= -1 => xy=0 Suy ra -4y=0 Suy ra y=0.
Vậy (x,y) thuộc {(2;1); (-2;1) ; (-4;0)}
b) Vì lũy thừa cơ số 6 thì luôn luôn tận cùng là 6 vậy 6666= (...6). Tận cùng=6