K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(a,\Rightarrow\dfrac{\left(-3\right)^x}{\left(-3\right)^4}=\left(-3\right)^3\\ \Rightarrow\left(-3\right)^{x-4}=\left(-3\right)^3\\ \Rightarrow x-4=3\Rightarrow x=7\\ b,Sửa:\left(x-\dfrac{1}{2}\right)^2=25\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=5\\x-\dfrac{1}{2}=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{5}\\x=-\dfrac{9}{5}\end{matrix}\right.\)

9 tháng 9 2017

a/ \(27^x.9^x=9^{27}:81\)

\(\Leftrightarrow3^{3x}.3^{2x}=3^{54}:3^4\)

\(\Leftrightarrow3^{2x+3x}=3^{50}\)

\(\Leftrightarrow2x+3x=50\)

\(\Leftrightarrow5x=50\)

\(\Leftrightarrow x=10\)

Vậy ...

9 tháng 9 2017

\(a.27^x.9^x=9^{27}:81\)

\(\left(3^3\right)^x.\left(3^2\right)^x=\left(3^2\right)^{27}:\left(3^2\right)^2\)

\(3^{3x}.3^{2x}=3^{50}\)

\(3^{3x+2x}=3^{50}\)

\(\Rightarrow3x+2x=50\)

\(x\left(3+2\right)=50\)

\(x=50:5=10\)

Vậy\(x=10\)

\(b.\left(\dfrac{12}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-2}-\left(-\dfrac{3}{5}\right)^4\)

\(\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}\)

\(\left(\dfrac{12}{25}\right)^x=\dfrac{144}{625}\)( Đề sai )

Mong các bạn giúp mk nha ❤❤❤

1 tháng 12 2017

a,\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+0,2\right)\)

\(=-\dfrac{891}{25}:4\)

\(=-\dfrac{891}{100}\)

b,\(\dfrac{5^4.20^4}{25^5.4^5}\)

\(=\dfrac{5^4.20^4}{\left(5^2\right)^5.\left(2^2\right)^5}\)

\(=\dfrac{5^4.20^4}{5^{10}.2^{10}}\)

\(=\dfrac{20^4}{5^6.2^{10}}\)

1 tháng 12 2017

cảm ơn bn ♫

hiu

1 tháng 1 2018

\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)

=\(\left(\dfrac{1}{9}\right)^{25}.\left(-9\right)^{25}-\dfrac{1}{6}\)

=\(\left[\dfrac{1}{9}.\left(-9\right)\right]^{25}-\dfrac{1}{6}\)

= \(\left(-1\right)^{25}-\dfrac{1}{6}\)

= \(-1-\dfrac{1}{6}=\dfrac{-7}{6}\)

1 tháng 1 2018

\(\left(\dfrac{1}{3}\right)^{50}\cdot\left(-9\right)^{25}-\dfrac{2}{3}:4\)

\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)

\(=\left(\dfrac{1}{9}\right)^{25}\cdot\left(-9\right)^{25}-\dfrac{1}{6}\)

\(=\left[\dfrac{1}{9}\cdot\left(-9\right)\right]^{25}-\dfrac{1}{6}\)

\(=\left(-1\right)^{25}-\dfrac{1}{6}=-1-\dfrac{1}{6}=-\dfrac{7}{6}\)

24 tháng 9 2020

a) Vì |x - 3,5| ≥ 0∀x

|4,5 - y| ≥ 0∀y

=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5

Vậy GTNN = 0 khi x = 3,5;y = 4,5

b) |x - 2| ≥ 0 ∀x

|3 - y| ≥ 0 ∀y

=> |x - 2| + |3 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTNN = 0 <=> x = 2,y = 3

c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)

=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)

Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5

Bài cuối tự làm :)))

1 tháng 1 2018

a/

Theo đề,ta có:

+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)

+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)

Từ (1) và (2), ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)

Do đó:

+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)

+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)

+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)

Vậy: + \(x=-\dfrac{224}{19}\)

+ \(y=-\dfrac{336}{19}\)

+ \(z=-\dfrac{420}{19}\)

1 tháng 1 2018

a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)

=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)

=> x=\(\dfrac{-224}{19}\)

y=\(\dfrac{-336}{19}\)

z=\(\dfrac{-420}{19}\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

5 tháng 7 2017

1) Tính

a) 253 : 52 = (52)3 : 52 = 56 : 52 = 54 = 625

\(b)\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^9\) d) 9 . 32 . \(\dfrac{1}{81}\) . 32 = 32 . 32 . \(\dfrac{1}{3^4}\) . 32 = 9

2) Tìm x thuộc Q, biết:

a) 3x + 2 = 27

=> 3x + 2 = 33

x + 2 = 3

x = 3 - 2

x = 1

b) \(\left(\dfrac{1}{2}x-3\right)^4=81\)

\(\Rightarrow\left(\dfrac{1}{2}x-3\right)^4=3^4\)

\(\dfrac{1}{2}x-3=3^{ }\)

\(\dfrac{1}{2}x=3+3\)

\(\dfrac{1}{2}x=9\)

\(x=9:\dfrac{1}{2}\)

\(x=18\)

c) \(\left(x-\dfrac{1}{2}\right)^3=-27\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(-3\right)^3\)

\(x-\dfrac{1}{2}=-3\)

\(x=-3+\dfrac{1}{2}\)

\(x=\dfrac{-5}{2}\)

d) 5 . 5x + 1 = 125

5x + 1 = 125 : 5

5x + 1 = 25

5x + 1 = 52

x + 1 = 2

x = 2 - 1

x = 1.

14 tháng 10 2018

\(\left|x+\dfrac{1}{2}\right|-\dfrac{2}{5}=0\)

\(\Rightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{2}{5}\)

\(\Rightarrow x+\dfrac{1}{2}=\pm\dfrac{2}{5}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{5}\\x+\dfrac{1}{2}=-\dfrac{2}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=-\dfrac{9}{10}\end{matrix}\right.\)

Vậy..............

14 tháng 10 2018

Bạn học lớp mấy vậy??