Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) A=37.36+20.37+44.37
A=37.(36+20+44)
A=37.100
A=3700
Bài 6 :
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+2^4+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)
\(A=\left(2+2^2+2^3+2^4+...+2^{2010}\right)+2^{2011}-2^0-\left(2+2^2+2^3+2^4+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
\(\Rightarrow A+1=2^{2011}\)
Vậy A đã có dạng lũy thừa cơ số là 2
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\)
\(=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)
Quy luật của nó là gì vậy sao lại 2+22+.....+28 hoặc 210
Mà bạn lại ghi là 29 quy luật của nó là gì
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
A=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11+1/11.12
A=1/5-1/6+1/6-1/7+1/7-1/8+...-1/11+1/12
A=1/5-1/12
A=7/60
Vậy A= 7/60
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
A = 1/4 - 1/12 (Cứ hai thằng cạnh nhau cộng lại bằng 0, chỉ còn thằng đầu và thằng cuối)
A = (3 - 1)/12
A = 2/12
A = 1/6
\(A=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(A=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)\(A=\dfrac{1}{5}-\dfrac{1}{12}\)
\(A=\dfrac{12}{60}-\dfrac{5}{60}=\dfrac{7}{60}\)
Gọi d là ƯCLN(2n+5,n+3)(d\(\in\)N*)
Ta có:\(2n+5⋮d,n+3⋮d\)
\(\Rightarrow2n+5⋮d,2\cdot\left(n+3\right)⋮d\)
\(\Rightarrow2n+5⋮d,2n+6⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vì ƯCLN(2n+5,n+3)=1
\(\Rightarrow\frac{2n+5}{n+3}\) là phân số tối giản
Gọi d là ƯCLN(2n+5,n+3)(d∈
N*)
Ta có:2n+5⋮d,n+3⋮d
⇒2n+5⋮d,2⋅(n+3)⋮d
⇒2n+5⋮d,2n+6⋮d
⇒(2n+6)−(2n+5)⋮d
⇒1⋮d⇒d=1
Vì ƯCLN(2n+5,n+3)=1
Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A=\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)
A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A<\(1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Đặt : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Vì : \(A< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Vậy ...
B18:
1) \(\left(a-b+c\right)-\left(a+c\right)=a-b+c-a-c=-b\)
2) \(\left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\)
3) \(-\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\)
4) \(a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab-ad=ac+ad=a\left(c-d\right)\)
5) \(a\left(b-c\right)+a\left(d+c\right)=ab-ac+ad+ac=ab+ad=a\left(b+d\right)\)
1/ (a - b + c) - (a + c) = a - b + c - a - c
= (a - a) + (c - c) - b = -b
2/ (a + b) - (b - a) + c = a + b - b + a + c
= (a + a) + (b - b) + c = 2a + c
3/ - (a + b - c) + (a - b - c) = -a - b + c + a - b - c
= (-a + a) - (b + b) + (c - c) = -2b
4/ a(b + c) - a(b + d) = ab + ac - ab - ad
= (ab - ab) + (ac - ad)
= a(c - d)
5/ a(b - c) + a(c + d) = ab - ac + ac + ad
= (ab + ad) + (-ac + ac)
= a(b + d)