Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
=> x-y /35 = y-z/15 = z-x /21
Theo tính chất dãy tỉ số bằng nhau ta có:
x-y /35 = y-z/15 = z-x /21 = x-y + y-z + z-x / 35+15+21 = 0
=>x-y =0
y-z =0
z-x =0
=>x=y=z
thay vào đẳng thức cầm c/m ta có 2 vế đều = 0 vì y-x=0 và z-y=0 (do x=y=z)
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)
\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)
=>(2x-y)(2y-z)(2z-x)=xyz
=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2
=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2
(3-x2)(3-y2)(3-z2)
=3x2y2+3y2z2+3z2x2-x2y2z2
sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
câu hỏi là j
tim x,y,z