K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(a,\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{3+2\sqrt{2.3}+2}-\sqrt{3-2\sqrt{2.3}+2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

\(b,\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5-2\sqrt{2.5}+2}-\sqrt{5+2\sqrt{5.2}+2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

2 tháng 7 2019

a) \(\sqrt{5+2\sqrt{6}}\) -\(\sqrt{5-2\sqrt{6}}\) 

=\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

=/\(\sqrt{3}+\sqrt{2}\)/  \(-\)/\(\sqrt{3}-\sqrt{2}\) /

=\(\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\) 

=\(\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) 

=\(2\sqrt{2}\) 

b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\) 

=\(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\) 

=/\(\sqrt{5}-\sqrt{2}\) / \(-\) /\(\sqrt{5}+\sqrt{2}\)/

=\(\sqrt{5}-\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)\) 

=\(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) 

=\(-2\sqrt{2}\)

2 tháng 7 2019

\(a,\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\sqrt{2.3}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2\)

\(=1\)

\(b,\sqrt{11+2\sqrt{6}}-3+\sqrt{2}\)

==>Đề sai???

23 tháng 9 2017

a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

nhân cả hai vế với \(\sqrt{2}\), ta được:

\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)

\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)

\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

\(=-2\)

\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

12 tháng 5 2018

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)

1 tháng 7 2016

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

18 tháng 6 2017

sai ngay từ đầu limdim

2 tháng 10 2015

câu a coi lai có sai sót j ko

2 tháng 10 2015

\(A=\sqrt{11-2\sqrt{10}}+\sqrt{9-2\sqrt{4}}-\sqrt{10}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}+\sqrt{5}-\sqrt{10}-\sqrt{7}=\sqrt{10}-1+\sqrt{5}-\sqrt{10}-\sqrt{7}\)

\(=\sqrt{5}-\sqrt{7}-1\)

1 tháng 6 2017

a) S=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}.\)

\(\sqrt{2}.\)S=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}.\)

\(\sqrt{2}.\)S =\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(\sqrt{2}.\)S=|\(\sqrt{7}\)-1|+|\(\sqrt{7}\)+1|=\(\sqrt{7}\)-1-\(\sqrt{7}\)-1=- 2

S= - \(\sqrt{2}.\)

1 tháng 6 2017

b)\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}=...\)

19 tháng 7 2019

Biểu thức A chị tính A2 rồi sẽ tính đc A

19 tháng 7 2019

Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ

Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc

3 tháng 10 2019

Căn bậc hai. Căn bậc ba

21 tháng 9 2020

\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)

\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)

\(=14+2\sqrt{49-40}=14+6=20\)

Khi đó:\(A=\sqrt{20}\)

Các câu còn lại bạn làm nốt nhé