Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\left(đpcm\right)\)
b) ta có : \(1+sin^2a+cos^2a=1+1=2\left(đpcm\right)\)
c) ta có : \(sina-sina.cos^2a=sina\left(1-cos^2a\right)=sina.sin^2a=sin^3a\left(đpcm\right)\)
d) đề thiếu
2)
\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)
\(=\sqrt{12,1.36.10}\)
= \(\sqrt{121.36}\)
\(=\sqrt{4356}\)
\(=66\)
3)
\(\sqrt{5a}.\sqrt{45a}-3a\)
\(=\sqrt{5.45a^2}-3a\)
\(=\sqrt{225a^2}-3a\)
\(=\sqrt{\left(15a\right)^2}-3a\)
\(=-15a-3a\) ( vì \(a\le0\))
\(=-18a\)
5)
\(\sqrt{0,36a^2}\)
\(=\sqrt{\left(0,6a\right)^2}\)
\(=-0,6a\) ( vì \(a< 0\) )
Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.
Chúc bạn học tốt!
1)
\(\sqrt{3a^3}.\sqrt{12}\)
\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)
\(=\sqrt{3.12}.\sqrt{a^3}\)
\(=6\sqrt{a^3}\)
4)
\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)
\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)
\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)
\(=54a^3-6\sqrt{a^2}\)
\(=54a^3-6a^2\) ( vì a<0)
6)
\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)
\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)
\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)
\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)
Mà\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)
\(=a^2\left(a-3\right)\)
\(=a^3-3a^2\)
Còn lại bạn làm tương tự nha, trể quá rùi :)))))
đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)
→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)
thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)
→\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)
áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)
s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)
s>=16/3-4→s>=\(\frac{4}{3}\)
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}+2}\)
b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)
Để P = 1/2
thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{a}-2=2\)
\(\Leftrightarrow\sqrt{a}=4\)
\(\Leftrightarrow a=16\left(tm\right)\)
\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)+4\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\left(\dfrac{a-1}{\sqrt{a}}\right)\)
\(=\left(\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\left(\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\right)\)
\(=\dfrac{4a\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=\dfrac{4a\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=4a\)
Câu b : Thay \(a=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) vào A ta được :
\(A=4.\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}}{2+\sqrt{6}}=12-4\sqrt{6}\)
???