K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

http://olm.vn/hoi-dap/question/476913.html

coi link trên nha

18 tháng 6 2016

Từ đề bài, ta có: (100a+10b+c)-(100c+10b+a)= 495 và a.c=b^2.
=> 99(a-c)=495. => a-c=5 và a.c=b^2.
-Nếu a=5: => c=0=> a.c=0=b^2.
=> b=0.
-Nếu a=6: => c=1=> b^2=1.6=6.(Loại do 6 không phải là số chính phương).
-Tương tự với a=7;c=2 và a=8;c=3.(Loại).
-Nếu a=9=> c=4 =>b^2= a.c=9.4=36 =6^2.
=> b=6( Do b thuộc N).
Vậy số có 3 chữ số cần tìm là 500 và 964. 

23 tháng 6 2019

a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(=100100a+10010b+1001c\)

\(=1001\cdot\overline{abc}\)

\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13

Đêm rồi không biết c/m chia hết cho 3 :)

b) \(\overline{aaa}=111\cdot a\)chia hết cho a

c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)

23 tháng 6 2019

sửa đề

\(a,\overline{abcabc}⋮7;11;13\)

=\(\overline{abc}.1000+\overline{abc}\)

=\(\overline{abc}\left(1000+1\right)\)

= \(\overline{abc}.1001\)

= \(\overline{abc}.7..11.13\)

=> \(\overline{abcabc}⋮7;11;13\)

\(b,\overline{aaa}:a=111\)

\(=>\overline{aaa}⋮a\)

\(c,\overline{abc}⋮\overline{abc}\)

Do \(\overline{abc}=\overline{abc}\)

=> \(\overline{abc}⋮\overline{abc}\)

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

12 tháng 9 2017

a, ab + bc + ca = abc

ab + bc + ca = a00 + bc

ab + ca = a00

Vì ab và ca là số có hai chữ số nên tổng của chúng ko quá 200 => a = 1

Vì b + a có tận cùng là 0 => b = 9

c + a + nhớ 1 có tận cùng là 0 => c = 8

Vậy a=1,b=9,c=8

b, abc + ab + a = 874

Đổi chỗ các chữ số vào 1 cột, ta được:

abc                                      aaa
+                                       +
 ab                         =>            bb
+                                        + 
   a                                            c
____                                  ______

874                                       874

Do bb + c < 10 nên 847 \(\ge\overline{aaa}\) > 874 - 110 = 764 => \(\overline{aaa}=777\)

=> bb + c = 874 - 777 = 97 

Mà \(97\ge\overline{bb}>97-10=87\Rightarrow\overline{bb}=88\)

=> c = 97 - 88 = 9

Vậy a = 7, b = 8, c = 9 

6 tháng 5 2018

Ta có:   \(\overline{abc}-\overline{cba}=495\)

         \(\Rightarrow100a+10b+c-100c-10b-a=495\)

          \(\Rightarrow99a-99c=495\)

          \(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)

Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)

=> \(b^2=10.\left(5+c\right)+c=50+11c\)

Vì \(\overline{ac}\) có 2 chữ số nên:

b^2 < 100

Mà b^2 > 50

=> b^2 thuộc 64,81

b^2 = 64 => 11c = 14 (vô lí)

b^2 = 81 => 11c = 31 (vô lí)

Vậy không có abc thỏa mãn

18 tháng 3 2017

abc = 100a + 10b + c = n2 - 1 (1)
cba = 100c + 10b + a = ( n - 2 )2 = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được:
abc - cba
= ( 100a + 10b + c ) - ( 100c + 10b + a ) = ( n2 - 1 ) - ( n2 - 4n + 4 )
= 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 4n - 4
= 100a - a + 10b -10b +c - 100c = n2 - n2 - 1 - 4 + 4n
= 99a - 99c = -5 + 4n
= 99. ( a - c ) = 4n - 5
=> 4n - 5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999
=> 100 \(\le\) n2 - 1 \(\le\) 999
=> 101 \(\le\) n2 \(\le\) 1000
=> 11 \(\le\) n \(\le\) 31
=> 39 \(\le\) 4n - 5 \(\le\) 119
=> Vì 4n - 5 \(⋮\) 99 nên :
4n - 5 = 99
4n = 99 + 5
4n = 104
n = 104 : 4
n = 26
=> abc = n2 - 1
abc = 262 - 1 ( thay n = 26 )
abc = 675
Vậy số cần tìm là 675.

18 tháng 5 2017

a, 111

b, 101

c, 1001

10 tháng 10 2017

a ) Ta có :

\(\overline{aaa}:a\)

\(=a.1.111:a.1\)

\(=111\)

b ) Ta có :

\(\overline{abab}:\overline{ab}\)

\(=\overline{ab}.100+\overline{ab}.1:\overline{ab}\)

\(=\overline{ab}.101:\overline{ab}\)

\(=101\)

c ) Ta có :

\(\overline{abcabc}:\overline{abc}\)

\(=\overline{abc}.1000+\overline{abc}.1:\overline{abc}\)

\(=\overline{abc}.1001:\overline{abc}\)

\(=1001\)