K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

giúp mk vs

24 tháng 3 2018

\(A=\left[\frac{x^2-y^2}{xy}-\frac{1}{xy}\left(\frac{x^2}{y}-\frac{y^2}{x}\right)\right]:\frac{x-y}{xy}\)

\(A=\left[\frac{x^2-y^2}{xy}-\left(\frac{x}{y^2}-\frac{y}{x^2}\right)\right].\frac{xy}{x-y}\) => \(A=\left(\frac{x^2-y^2}{xy}-\frac{x^3-y^3}{x^2y^2}\right).\frac{xy}{x-y}=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^2y^2}\right).\frac{xy}{x-y}\)

=> \(A=\frac{x-y}{xy}\left(\left(x+y\right)-\frac{x^2+xy+y^2}{xy}\right).\frac{xy}{x-y}\)=> \(A=x+y-\frac{x^2+xy+y^2}{xy}=\frac{x^2y+xy^2-x^2-xy-y^2}{xy}\)

20 tháng 2 2017

\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\frac{x^2+xy+y^2}{x+y}\)

=\(\left(\frac{x^2+xy+-2y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2-y^2}{x\left(x-y\right)}\right).\left(\frac{1}{x+y}\right)\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

16 tháng 3 2017

Mình vs bạn trùng họ và tên rồi thì phải....!hehe

ĐKXĐ : \(x,y\ne0\)\(;\)\(x\ne y\)

\(a)\) \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x-y\right)}+\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}+\frac{xy^2}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\left(\frac{xy\left(x+y\right)+\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x-y\right)}.\frac{x-y}{x^2-xy+y^2}\)

\(P=\frac{2y}{xy}-\frac{x+y}{xy}=\frac{y-x}{xy}\)

\(b)\)

+) Với \(\left|2x-1\right|=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)

Mà \(x\ne0\) ( ĐKXĐ ) nên \(x=1\)

+) Với \(\left|y+1\right|=\frac{1}{2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y+1=\frac{1}{2}\\y+1=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-3}{2}\end{cases}}}\)

Thay \(x=1;y=\frac{-1}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-1}{2}-1}{1.\frac{-1}{2}}=\frac{\frac{-3}{2}}{\frac{-1}{2}}=3\)

Thay \(x=1;y=\frac{-3}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-3}{2}-1}{1.\frac{-3}{2}}=\frac{\frac{-5}{2}}{\frac{-3}{2}}=\frac{15}{4}\)

Vậy ... 

23 tháng 12 2018

Cảm ơn nè <3 

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)