K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

A.2=2 +2^2+2^3+...+2^6

b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)

A=2^6-1

23 tháng 11 2019

Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

11 tháng 6 2016

Câu 2) 

1)* Nếu : \(x^2-2\ge0;2-x^2\ge0=>x^2-2+2-x^2\)=28

=> \(x^2-x^2-2+2=28=>0x^2=28\) ( vô lý )

Vậy x không có giá trị

* Nếu : \(x^2-2< 0:2-x^2< 0\)

=> \(-\left(x^2-2\right)-\left(2-x^2\right)=28=>-x^2+2-2+x^2=28=>0x^2=28\left(l\right)\)

Vậy từ hai trường hợp trên x không có giá trị

2) 77621(mod3)7767761(mod3)7762≡1(mod3)⇒776776≡1(mod3)
7777770(mod3)777777≡0(mod3)
77821(mod3)7787781(mod3)7782≡1(mod3)⇒778778≡1(mod3)
A2(mod3)⇒A≡2(mod3) 

28 tháng 3 2019

\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)

\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)

\(B=70\cdot13\cdot\frac{3}{70}\)

\(B=70\cdot\frac{3}{70}\cdot13\)

\(B=3\cdot13\)

\(B=39\)

25 tháng 1 2019

a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ

\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)

Vì 1006 là số chẵn => 1006.2011 là số chẵn

b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)

c) Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)

=> C=4

8 tháng 11 2017

a) Vì a \(⋮\) a => \(2⋮a\)

\(\Rightarrow a\inƯ\left(2\right)\Rightarrow a\in\left\{\pm1;\pm2\right\}\)

b) Ta có: a + 5 = (a+1) +4

Do a+ 1 \(⋮a+1\Rightarrow4⋮a+1\)

\(\Rightarrow a+1\inƯ\left(4\right)\)

\(\Rightarrow a+1\left\{\pm1;\pm2;\pm4\right\}\)

Với x + 1 = 1 thì x = 0

Với x + 1 = -1 thì x = -2

...

c) Ta có: \(a^2+3=a\left(a+1\right)-a-1+4\)

\(=a\left(a+1\right)-\left(a+1\right)+4=\left(a-1\right)\left(a+1\right)+4\)

Do \(\left(a-1\right)\left(a+1\right)⋮\left(a+1\right)\Rightarrow4⋮\left(a+1\right)\)

\(\Rightarrow a+1\inƯ\left(4\right)\)

...

d) Làm như trên và loại bớt trường hợp bằng cách lí luận 2a + 1 luôn lẻ.

e) Tương tự.

8 tháng 11 2017

câu d thì làm như câu nào vậy