Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)
\(y=\frac{4\frac{6}{11}x11\frac{8}{9}+4\frac{12}{13}:3\frac{2}{5}}{123\frac{34}{45}:21\frac{1}{8}}\)
Lời giải:
\(y=\frac{\frac{50}{11}.\frac{107}{9}+\frac{64}{13}.\frac{5}{17}}{\frac{5569}{45}.\frac{8}{169}}=\frac{1214030}{21879}:\frac{44552}{7605}=\frac{39455975}{4165612}\)
\(\frac{3}{34}+\frac{34}{34}.\frac{3}{4}=\frac{3}{34}+1.\frac{3}{4}=\frac{3}{34}+\frac{3}{4}=\frac{57}{68}\)
\(\frac{23}{3}.\frac{56}{6}+\frac{86}{78}=\frac{23}{3}.\frac{28}{3}+\frac{43}{39}=\frac{644}{9}+\frac{28}{3}=\frac{728}{9}\)
\(\frac{3}{45}:\frac{1}{4}=\frac{1}{15}.4=\frac{4}{15}\)
\(\frac{5}{34}-\frac{3}{6}=\frac{5}{34}-\frac{1}{2}=\frac{3}{4}\)
\(D=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(D=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}\)
\(D=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}\)
\(D=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(D=2\left(\frac{1}{4}-\frac{1}{10}\right)=2\cdot\frac{3}{20}=\frac{3}{10}\)
\(E=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(E=\frac{5}{28}+\frac{1}{14}+\frac{1}{26}+...+\frac{1}{140}\)
\(E=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(E=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(E=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
Bài làm
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải:
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
A = 3.065