K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) 

=> \(a-b=\frac{1}{c}-\frac{1}{b}\) => a - b = \(\frac{b-c}{bc}\) (1)

b - c = \(\frac{1}{a}-\frac{1}{c}\) => b - c = \(\frac{c-a}{ac}\)  (2)

c - a = \(\frac{1}{b}-\frac{1}{a}=\frac{a-b}{ab}\) (3)

Nhân vế với vế của  (1)(2)(3) => \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\frac{b-c}{bc}.\frac{c-a}{ac}.\frac{a-b}{ab}\)

=> (abc)= 1 => abc = 1 hoặc abc  = -1

Vậy...  

 

31 tháng 7 2019

https://olm.vn/hoi-dap/detail/48946023107.html              vào trang đó coi rồi

ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab

tương tự a^2 + c^2 =b^2-2ac

               b^2 + c^2 =a^2-2bc

thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )

31 tháng 7 2019

  ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

lộn nha không phải cái trang đó đâu cái này này 

5 tháng 9 2017

đặt x=a-b;y=b-c;z=c-a

ta có x+y+z=0

nên ta có ĐPCM 

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)

<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )

23 tháng 4 2019

xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b

Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)

xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )

Vậy A = -1

7 tháng 1 2017

Vẫn có \(AB+BC+CA=0\), làm tương tự câu a (à giờ mới nhận ra có 2 chữ A, B và C trùng nhau).

Nên anh kí hiệu biểu thức là \(b\) nha.

\(\frac{A^2}{A^2+2BC}=\frac{A^2}{A^2+BC-CA-AB}=-\frac{A^2}{\left(A-B\right)\left(C-A\right)}\)

Quy đồng mẫu được \(b=-\left[\frac{A^2\left(B-C\right)+B^2\left(C-A\right)+C^2\left(A-B\right)}{\left(A-B\right)\left(B-C\right)\left(C-A\right)}\right]\).

Tự làm tiếp nha em, lâu rồi anh không làm cái này nên cũng lười.

7 tháng 1 2017

(\(AB+BC+CA=0\), đúng không nhỉ?)

Ta có \(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC-AB-AC}=\frac{-1}{\left(A-B\right)\left(C-A\right)}\).

Làm tương tự rồi quy đồng mẫu được \(A=0\).

17 tháng 10 2017

Từ \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\left(ABC\ne0\right)\), ta có:
\(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{BC}{ABC}+\frac{AC}{ABC}+\frac{AB}{ABC}=\frac{BC+AC+AB}{ABC}=0\).
Suy ra \(BC+AC+AB=0\).
Từ đó ta có:
\(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC+BC}=\frac{1}{A^2+BC-AC-AB}\)\(=\frac{1}{A\left(A-C\right)-B\left(A-C\right)}=\frac{1}{\left(A-B\right)\left(A-C\right)}\).Tương tự \(\frac{1}{B^2+2CA}=\frac{1}{\left(A-B\right)\left(C-B\right)}\)\(\frac{1}{C^2+2AB}=\frac{1}{\left(C-A\right)\left(C-B\right)}\).
Do đó:
\(\frac{1}{A^2+2BC}+\frac{1}{B^2+2CA}+\frac{1}{C^2+2AB}=\frac{1}{\left(A-B\right)\left(A-C\right)}+\)\(\frac{1}{\left(A-B\right)\left(C-B\right)}+\frac{1}{\left(C-A\right)\left(C-B\right)}\)
\(=\frac{B-C-\left(A-C\right)+A-B}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=\frac{0}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=0\).
 

AH
Akai Haruma
Giáo viên
2 tháng 6 2024

Lời giải:

Ta có:

$\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{a+b}{a-b}.\frac{c+a}{c-a}+\frac{b+c}{b-c}.\frac{c+a}{c-a}$

$=\frac{(a+b)(b+c)(c-a)+(a+b)(c+a)(b-c)+(b+c)(c+a)(a-b)}{(a-b)(b-c)(c-a)}$

$=\frac{[b^2+(ab+bc+ac)](c-a)+[a^2+(ab+bc+ac)](b-c)+[c^2+(ab+bc+ac)](a-b)}{(a-b)(b-c)(c-a)}$

$=\frac{b^2(c-a)+a^2(b-c)+c^2(a-b)+(ab+bc+ac)(c-a+b-c+a-b)}{(a-b)(b-c)(c-a)}$

$=\frac{b^2(c-a)+a^2(b-c)+c^2(a-b)}{(a-b)(b-c)(c-a)}$

$=\frac{(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)}{-[(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)]}=-1$

Ta có đpcm.