\(\frac{1-\frac{1}{1+\frac{1}{2}}}{1+\frac{1}{1-\frac{1}{2}}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

a, \(\frac{1-\frac{1}{1+\frac{1}{2}}}{1+\frac{1}{1-\frac{1}{2}}}=\frac{1-\frac{1}{\frac{3}{2}}}{1+\frac{1}{\frac{1}{2}}}=\frac{1-\frac{2}{3}}{1+2}=\frac{\frac{1}{3}}{3}=\frac{1}{9}\)

b, \(0,8:\frac{4}{5}-\frac{4}{5}\cdot\left[1,08-\frac{2}{25}\right]=0,8:\frac{4}{5}-\frac{4}{5}\cdot1\)

\(=\frac{4}{5}\cdot\left[0,8+1\right]=\frac{4}{5}\cdot1,8=\frac{36}{25}\)

c, \(\left[1-\frac{1}{2}\right]\cdot\left[1-\frac{1}{3}\right]\cdot...\cdot\left[1-\frac{1}{11}\right]\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10}{11}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot10}{2\cdot3\cdot4\cdot5\cdot...\cdot11}=\frac{1}{11}\)

16 tháng 7 2018

\(a,A=\left[\frac{4}{11}.\left(\frac{1}{25}\right)^0+\frac{7}{22}.2\right]^{2010}-\left(\frac{1}{2^2}:\frac{8^2}{4^4}\right)^{2009}\)

\(A=\left(\frac{4}{11}.1+\frac{7}{11}\right)^{2010}-\left(\frac{1}{2^2}.2^2\right)^{2009}\)

\(A=1-1=0\)

\(b,B=\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{17}}+\left(1,2.0,5\right):\frac{4}{5}\)

\(B=\frac{0,8:1}{\frac{3}{5}}+\frac{\left(1\right):\frac{4}{7}}{\left(\frac{59}{9}-\frac{13}{4}\right).36}\)

\(B=0,8.\frac{5}{3}+\frac{\frac{7}{4}}{\frac{119}{36}.36}\)

\(B=\frac{4}{3}+\frac{7}{4}.\frac{1}{119}\)

\(B=\frac{4}{3}+\frac{1}{68}=\frac{275}{204}\)

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
22 tháng 2 2020

C = \(25.\left(\frac{-1}{3}\right)^3\) \(+\frac{1}{5}\) \(-2.\left(\frac{-1}{2}\right)^2\) \(-\frac{1}{2}\)

C = \(25.\left(\frac{-1}{27}\right)+\frac{1}{5}\) \(-2.\frac{1}{4}\) \(-\frac{1}{2}\)

C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-\frac{1}{2}\) \(-\frac{1}{2}\)

C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-1\)

C = \(\frac{-125}{135}\) \(+\frac{27}{135}\) \(-\frac{135}{135}\)

C = \(\frac{-233}{135}\)

D =  \(-8.\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)

D = \(-8.\frac{1}{2}\) \(.\frac{12}{13}\)

D = \(-4.\frac{12}{13}\)

D = \(\frac{-48}{13}\)

E = \(5\sqrt{16}\) \(-4\sqrt{9}\) \(+\sqrt{25}\) \(-0,3\sqrt{400}\)

E = \(5.4-4.3+5-0,3.20\)

E = \(20-12+5-6\)

E = \(8+\left(-1\right)\)

E = \(7\)

F = \(\left(\frac{-3}{2}\right)\) \(+\left|\frac{-5}{6}\right|\) \(-1\frac{1}{2}\) \(:6\)

F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{3}{2}\) \(.\frac{1}{6}\)

F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{1}{4}\) 

F = \(\left(\frac{-18}{12}\right)\) \(+\frac{10}{12}\) \(-\frac{3}{12}\)

F = \(\frac{-11}{12}\)

 Chúc cậu hk tốt ~ 

Bài 1:

a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)

\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)

\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)

\(=\frac{-2}{2}=-1\)

b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)

\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)

\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)

\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)

c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)

\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)

d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)

\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)

\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)

\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)

e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)

\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)

\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)

\(=\frac{11}{12}\)

f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)

\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)

\(=\frac{1}{5}\)

26 tháng 2 2020

Bài 1:

a) \(0,5-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)

\(=\frac{1}{2}-\frac{5}{41}+\frac{1}{2}-\frac{36}{41}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{5}{41}+\frac{36}{41}\right)\)

\(=1-1\)

\(=0.\)

b) \(\left(-\frac{2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(-\frac{1}{3}+\frac{4}{7}\right):\frac{4}{5}\)

\(=-\frac{2}{3}+\frac{3}{7}:\frac{4}{5}-\frac{1}{3}+\frac{4}{7}:\frac{4}{5}\)

\(=\left[\left(-\frac{2}{3}\right)-\frac{1}{3}\right]+\left(\frac{3}{7}+\frac{4}{7}\right):\frac{4}{5}\)

\(=\left(-1\right)+1:\frac{4}{5}\)

\(=\left(-1\right)+\frac{5}{4}\)

\(=\frac{1}{4}.\)

c) \(\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.\sqrt{49}}\)

\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+3.7}\)

\(=\left(-\frac{3}{4}\right).\sqrt{\frac{16}{9}+21}\)

\(=\left(-\frac{3}{4}\right).\sqrt{\frac{205}{9}}\)

\(=\left(-\frac{3}{4}\right).\frac{\sqrt{205}}{3}\)

\(=-\frac{\sqrt{205}}{4}.\)

d) \(\left(-\frac{1}{3}\right)^2.\frac{4}{11}+1\frac{5}{11}.\left(\frac{1}{3}\right)^2\)

\(=\frac{1}{9}.\frac{4}{11}+\frac{16}{11}.\frac{1}{9}\)

\(=\frac{1}{9}.\left(\frac{4}{11}+\frac{16}{11}\right)\)

\(=\frac{1}{9}.\frac{20}{11}\)

\(=\frac{20}{99}.\)

Chúc bạn học tốt!

26 tháng 2 2020

cảm ơn bạn