Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
a. \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)
Vì C thuộc Z nên 5 / x + 2 thuộc Z
=> x + 2 thuộc { - 5 ; - 1 ; 1 ; 5 }
=> x thuộc { - 7 ; - 3 ; - 1 ; 3 } ( tm x thuộc Z )
c. \(D=\frac{x^2-2x+1}{x+1}=\frac{x\left(x+1\right)-3x+1}{x+1}=x-\frac{3x+3-2}{x+1}=x-3-\frac{2}{x+1}\)
Vì D thuộc Z nên 2 / x + 1 thuộc Z và x thuộc Z
=> x + 1 thuộc { - 2 ; - 1 ; 1 ; 2 }
=> x thuộc { - 3 ; - 2 ; 0 ; 1 } ( tm x thuộc Z )
c. Để C và D cũng nguyên bới một giá trị x thì x = - 3
a.A: \(\dfrac{3}{x-1}\)
Để A nhận giá trị nguyên thì 3 chia hết x-1
Suy ra: x-1 thuộc Ư(3) ={1;-1;3;-3}
Ta có bảng sau:
n-1 | -3 | -1 | 3 | 1 |
n | -2 | 0 | 4 | 2 |
Kết luận | Thỏa mãn | Thỏa mãn | Thỏa mãn | Thỏa mãn |
Vậy x thuộc { -2; 0;4 ;2}
a.Để \(A\in Z\) thì \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có:
\(x-1=1\\ x=1+1\\ x=2\\\)
\(x-1=-1\\ x=\left(-1\right)+1\\ x=0\)
\(x-1=3\\ x=3+1\\ x=4\)
\(x-1=-3\\ x=\left(-3\right)+1\\ x=-2\)
Vậy, để \(A\in Z\) thì \(x\in\left\{2;0;4;-2\right\}\)
Ta có : \(A=\dfrac{x^2+2x+1-4x-4+4}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-4\left(x+1\right)+4}{x+1}=x+1-4+\dfrac{4}{x+1}\)
- Để A là số nguyên
\(\Leftrightarrow x+1\inƯ_{\left(4\right)}\) ( Do x là số nguyên )
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)
Vậy ....
Cảm ơn nhiều nhé !