Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(3x-1)(3x+1)(2x+3)=0
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)
=>2x-1/3=19/12 hoặc 2x-1/3=-19/12
=>2x=23/12 hoặc 2x=-15/12=-5/4
=>x=23/24 hoặc x=-5/8
d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)
=>-5/6x=-3/2
=>x=3/2:5/6=3/2*6/5=18/10=9/5
e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4
=>2/5x=5/4 hoặc 2/5x=-1/4
=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8
f: =>14x-21=9x+6
=>5x=27
=>x=27/5
h: =>(2/3)^2x+1=(2/3)^27
=>2x+1=27
=>x=13
i: =>5^3x*(2+5^2)=3375
=>5^3x=125
=>3x=3
=>x=1
1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
Giải:
a) \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x-3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x-3}=\dfrac{3x+2-3x+1}{5x+7-5x+3}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{3x+2}{5x+7}=\dfrac{3}{10}\)
\(\Leftrightarrow30x+20=15x+21\)
\(\Leftrightarrow15x=1\)
\(\Leftrightarrow x=\dfrac{1}{15}\)
Vậy ...
b) \(\dfrac{\left|2x-1\right|}{\dfrac{1}{2}}=\dfrac{18}{5}\)
\(\Leftrightarrow5\left|2x-1\right|=9\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{9}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{9}{5}\\2x-1=-\dfrac{9}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...
1: \(\Leftrightarrow\left(x+1\right)^2=4\)
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
2: \(\Leftrightarrow7x-21=5x+25\)
=>2x=46
=>x=23
3: \(\Leftrightarrow x^2+4x+3=x^2+0.5x+4x+2\)
=>4,5x+2=4x+3
=>x=1
a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2
vì\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6
\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8
\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10
vậy x=6,y=8,z=10
vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)
\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)
từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1
vì\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9
\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12
\(\dfrac{z}{16}\)=-1=>z=-1.16=-16
vậy...
a/ \(\dfrac{1}{3}-\dfrac{2}{5}+3x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1}{15}+3x=\dfrac{3}{4}\)
\(\Leftrightarrow3x=\dfrac{49}{60}\)
\(\Leftrightarrow x=\dfrac{49}{180}\)
Vậy....
b/ \(\dfrac{3}{2}-1+4x=\dfrac{2}{3}-7x\)
\(\Leftrightarrow\dfrac{1}{2}+4x=\dfrac{2}{3}-7x\)
\(\Leftrightarrow4x+7x=\dfrac{2}{3}-\dfrac{1}{2}\)
\(\Leftrightarrow11x=\dfrac{1}{6}\)
\(\Leftrightarrow x=\dfrac{1}{66}\)
Vậy....
c/ \(2\left(\dfrac{3}{4}-5x\right)=\dfrac{4}{5}-3x\)
\(\Leftrightarrow\dfrac{3}{2}-10x=\dfrac{4}{5}-3x\)
\(\Leftrightarrow-10x+3x=\dfrac{4}{5}-\dfrac{3}{2}\)
\(\Leftrightarrow-7x=-\dfrac{7}{10}\)
\(\Leftrightarrow x=-\dfrac{1}{10}\)
Vậy .....
d/ \(4\left(\dfrac{1}{2}-x\right)-5\left(x-\dfrac{3}{10}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow2-4x-5x-\dfrac{3}{2}=\dfrac{7}{4}\)
\(\Leftrightarrow2+\left(-4x\right)+\left(-5x\right)+\left(\dfrac{-3}{2}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow-9x+\dfrac{1}{2}=\dfrac{7}{4}\)
\(\Leftrightarrow-9x=\dfrac{5}{4}\)
\(\Leftrightarrow x=-\dfrac{5}{36}\)
\(\dfrac{2}{3x}\)-\(\dfrac{3}{12}\)= \(\dfrac{4}{5}\)-\(\left(\dfrac{7}{x}-2\right)\)
\(\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
\(\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+\dfrac{1}{4}+2\)
\(\dfrac{2x}{3x^2}+\dfrac{21x}{3x^2}=\dfrac{61}{20}\)
\(\dfrac{2x+21x}{3x^2}=\dfrac{61}{20}\)
=> 20(2x + 21x)= 61.3x\(^2\)
=> 40x + 420x= 183x\(^2\)
=>460x = 183x\(^2\)
=> \(\dfrac{460}{183}\)= \(\dfrac{x^2}{x}\)
=> x=\(\dfrac{460}{183}\)
a. Kiểm tra lại mẫu số vế phải, \(7-5x\) hay \(7-3x\)
b. ĐKXĐ: \(x\ne-\dfrac{5}{3}\)
\(\dfrac{3x+5}{12}=\dfrac{3}{5+3x}\)
\(\Leftrightarrow\dfrac{\left(3x+5\right)^2}{12\left(3x+5\right)}=\dfrac{36}{12\left(3x+5\right)}\)
\(\Rightarrow\left(3x+5\right)^2=36=6^2\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=6\\3x+5=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{11}{3}\end{matrix}\right.\) (thỏa mãn)