Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Ta có: \(A=4x^2-x-2=(2x)^2-2.2x.\frac{1}{4}x+(\frac{1}{4})^2-\frac{33}{16}\)
\(=(2x-\frac{1}{4})^2-\frac{33}{16}\)
Vì \((2x-\frac{1}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\ge 0-\frac{33}{16}=-\frac{33}{16}\)
Vậy GTNN của $A$ là $\frac{-33}{16}$ khi $x=\frac{1}{8}$
b)
\(B=\frac{2x^2+6x-3}{5}=\frac{2(x^2+3x+\frac{9}{4})-\frac{15}{2}}{5}\)
\(=\frac{2(x+\frac{3}{2})^2-\frac{15}{2}}{5}\geq \frac{2.0-\frac{15}{2}}{5}=\frac{-3}{2}\)
Vậy \(B_{\min}=\frac{-3}{2}\Leftrightarrow (x+\frac{3}{2})^2=0\Leftrightarrow x=\frac{-3}{2}\)
c)
\(C=x^4+4x-1\)
\(=x^4-2x^2+1+2x^2+4x-2\)
\(=(x^2-1)^2+2(x^2+2x+1)-4\)
\(=(x^2-1)^2+2(x+1)^2-4\)
\(=(x-1)^2(x+1)^2+2(x+1)^2-4=(x+1)^2[(x-1)^2+2]-4\)
Thấy rằng:
\((x+1)^2\geq 0; (x-1)^2+2>0\Rightarrow (x+1)^2[(x-1)^2+2]\geq 0\)
\(\Rightarrow C\geq 0-4=-4\)
Vậy $C_{\min}=-4$ khi \((x+1)^2=0\Leftrightarrow x=-1\)
d)
\(D=4x^2+\frac{9}{x^2}=(2x)^2+(\frac{3}{x})^2-2.2x.\frac{3}{x}+12\)
\(=(2x-\frac{3}{x})^2+12\geq 0+12=12\)
Vậy $D_{\min}=12$ khi \(2x-\frac{3}{x}=0\Leftrightarrow x=\pm \sqrt{\frac{3}{2}}\)
a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)
Do đó: Phươbg trình vô nghiệm
b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)
Do đó: Phương trình vô nghiệm
c: \(\Leftrightarrow x^2-4x+4-3=0\)
\(\Leftrightarrow\left(x-2\right)^2=3\)
hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
d: \(\Leftrightarrow3x^2+6x+x+2=0\)
=>(x+2)(3x+1)=0
=>x=-2 hoặc x=-1/3
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
c/
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)
Đặt \(x^2-x=t\)
\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(2\left(t^2-2\right)-3t+2=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)
b/ Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)
\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)
\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)
Lời giải:
a)
\(3x^2-5x+1=2x-3\)
\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)
\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)
b)
\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)
\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)
\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)
c)
\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)
\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)
(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)
d)
\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)
(\(a=1;b=-5(m+1); c=m^2-2)\)
b) Đặt t = x2 ( t ≥ 0) ta có pt:
t2 - t2 - 2= 0
Δ= (-1)2 - 4.1. (-2)
= 9 > 0
⇒ \(\sqrt{\Delta}=\sqrt{9}=3\)
Vậy pt có 2 no phân biệt
x1= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-1\right)+3}{2.1}=2\)
x2= \(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-1\right)-3}{2.1}=-1\)
Với t = 2 thì x2= 2 ⇔ x1;2 = \(\pm4\)
Với t = -1 thì x2= -1 ⇔ x3;4 ∈ ∅
Vậy tập nghiệm của pt là: S= \(\left\{\pm4\right\}\)
c) Đặt t = x2 ( t ≥ 0) ta có pt:
4t2 - 5t2 - 9= 0
Δ= (-5)2 - 4.4. (-9)
= 169 > 0
⇒ \(\sqrt{\Delta}\) = \(\sqrt{169}=13\)
Vậy pt có 2 no phân biệt
x1= \(\dfrac{5+13}{2.4}=\dfrac{9}{4}\)
x2= \(\dfrac{5-13}{2.4}=-1\)
Với t = \(\dfrac{9}{4}\) thì x2= \(\dfrac{9}{4}\) ⇔ x1;2 = \(\pm\dfrac{3}{2}\)
Với t = -1 thì x2= -1 ⇔ x3;4 ∈ ∅
Vậy tập nghiệm của pt là: S= \(\left\{\pm\dfrac{3}{2}\right\}\)
a: =>\(\dfrac{x+1-2x}{x\left(x+1\right)}=1\)
=>-x+1=x^2+x
=>x^2+x+x-1=0
=>x^2+2x-1=0
=>\(x=-1\pm\sqrt{2}\)
b: =>x^4+2x^2-x^2-2=0
=>(x^2+2)(x^2-1)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: =>4x^4-9x^2+4x^2-9=0
=>(4x^2-9)(x^2+1)=0
=>4x^2-9=0
=>x=3/2 hoặc x=-3/2