Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2013.2014+2014.2015+2015.2016\right)\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right)\left(\frac{4}{3}-\frac{4}{3}\right)\)
\(=\left(2013.2014+2014.2015+2015.2016\right).0\)
\(=0\)
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
Ta có:
\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)
c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.
d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)
\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)
\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)
\(\frac{11}{9}+\frac{35}{18}\)
\(=\frac{19}{6}\)
\(\frac{22}{21}:\frac{1}{2}+\frac{25}{12}:\frac{1}{2}\)
\(\frac{44}{21}+\frac{25}{6}\)
\(\frac{263}{42}\)
= \(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{19}{20}=\frac{1}{20}\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)
= đến đây bn xem trong thống kê hỏi đáp nhé
= :))
(1-1/2).(1-1/3).(1-1/4).(1-1/5)=b/100
=> 1/2.2/3.3/4.4/5=b/100
=> 1/5=b/100
=> b=100:5=20
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
Ta có:
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
nha
a. ta có (0.1+0.19)+(0.2+0.18)......+0.10
A=0.20+0.20++0.20+0.20+0.20+0.20+0.20+0.20+0.20+0.10
A=1.90
câu b mình pó tay
a ) \(A=0,1+0,2+...+0,19\)
\(A=\left(0,1+0,2+...+0,9\right)+\left(0,10+0,11+...+0,19\right)\)
\(A=0,1\times\left(1+2+...+9\right)+0,1\times\left(1+1,1+...+1,9\right)\)
\(A=0,1\times45+0,1\times14,5\)
\(A=0,1\times\left(45+14,5\right)\)
\(A=0,1\times59,5\)
\(A=5,95\)
b ) \(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div1\frac{1}{2}+1\frac{1}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{1}{2}\div\frac{3}{2}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\left(1+\frac{2}{6}+\frac{4}{3}\right)\)
\(B=\left(2017\times2016+2014\times2015\right)\times\frac{8}{3}\)