Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 2x-3<0
=>2x<3
hay x<3/2
c: \(\left(2x-4\right)\left(9-3x\right)>0\)
=>(x-2)(x-3)<0
=>2<x<3
d: \(\dfrac{2}{3}x-\dfrac{3}{4}>0\)
=>2/3x>3/4
hay x>9/8
a) x3 = -27
<=> -33 = -27
=> x = -3
b) (2x - 1)3 = 8
<=> 8x3 - 12x2 + 6x - 1 = 8
<=> 8x3 - 12x2 + 6x - 1 - 8 = 0
<=> (2x - 3)(4x2 + 3) = 0
<=> 2x - 3 = 0 hoặc 4x2 + 3 = 0
2x = 0 + 3
2x = 3
x = 3/2
=> x = 3/2
c) x3 = x5
<=> x3 - x5 = 0
<=> x3(1 - x2) = 0
<=> x = 0; 1; -1
=> x = 0; 1; -1
d) (x - 2)2 = 16
<=> (x - 2)2 = 42
<=> x - 2 = 4 hoặc x - 2 = -4
x = 4 + 2 x = -4 + 2
x = 6 x = -2
=> x = 6; -2
g) (2x - 3)2 = 9
<=> (2x - 3)2 = 32
<=> 2x - 3 = 3 hoặc 2x - 3 = -3
2x = 3 + 3 2x = -3 + 3
2x = 6 2x = 0
x = 3 x = 0
=> x = 3; 0
y) 3x3 - 4x = 0
<=> x(3x - 4) = 0
<=> x = 0 hoặc 3x - 4 = 0
3x = 0 + 4
3x = 4
x = 4/3
a) (2x-1)(x+2)=0
<=> 2x-1=0
Hoặc x+2=0
<=>2x=1
Hoặc x=-2
<=>x=1/2
Hoặcx=-2
Xl nha mk ko bt làm mấy câu kia
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
bài 1 :
b) (x-1/2 )2 = 0
<=> x - 1/2 = 0
<=> x = 0+ 1/2
<=> x = 1/2
c) ( x - 2 ) 2 = 1
<=> x -2 = 1
<=> x = 1 +2 = 3
d) ( 2x -1 )3 = -8
<=> ( 2x - 1) 3 = ( -2 ) 3
<=> 2x - 1 = -2
<=> 2x = -2+1 = -1
<=> x = -1/2
Bài 2 :
c) 32x-1=243
<=> 32x-1= 35
<=> 2x-1 = 5
<=> 2x = 6
<=> x = 6:2 = 3
Mk chỉ giải đc như vậy thôi
bạn thông cảm nhé !
a) \(2\left|3+x\right|=\left|2x-5\right|\)
\(\Leftrightarrow\left|2\left(3+x\right)\right|=\left|2x-5\right|\)
\(\Leftrightarrow\left|6+2x\right|=\left|2x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}6+2x=2x-5\\6+2x=5-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\left\{\varnothing\right\}\\x=\frac{-1}{4}\end{cases}}\)
Vậy \(x=\frac{-1}{4}\)
Ai làm đi mình k