Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+...+\dfrac{5}{25.28}\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}.\dfrac{6}{28}=\dfrac{5}{14}\)
\(E=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{24.25}=2\left(\dfrac{1}{2}-\dfrac{1}{25}\right)=\dfrac{2.23}{50}=\dfrac{23}{25}.\)
\(\dfrac{D}{E}=\dfrac{5}{24}.\dfrac{25}{23}=\dfrac{125}{552}.\)
1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)
2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)
c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)
\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)
\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1^m}{3^m}=\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1}{3^m}=\dfrac{1}{3^4}\)
\(\Rightarrow m=4\)
b) \(\left(\dfrac{3}{5}\right)^n=\left(\dfrac{9}{25}\right)^5\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left[\left(\dfrac{3}{5}\right)^2\right]^5\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^{10}\)
\(\Rightarrow n=10\)
c) \(\left(-0,25\right)^p=\dfrac{1}{256}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{256}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{4^4}\)
\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\left(\dfrac{1}{4}\right)^4\)
\(\Rightarrow p=4\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)
b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)
=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)
Bài 1:
a: \(A=\left(-\dfrac{1}{5}\right)^{33}:\left(-\dfrac{1}{5}\right)^{32}=\dfrac{-1}{5}\)
c: \(C=\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)
=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)
=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)
=> \(x=\dfrac{-1}{11}\)
Đây toán 8 mà? :v
a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)
\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)
\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)
\(\Leftrightarrow\left(11+1\right)x=0\)
\(\Leftrightarrow11x+1=0;x=0\)
\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)
Vậy....
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
a/ \(\left(-52\right)^3:13^3=\left(-52:13\right)^3=\left(-4\right)^3\)
b/ \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)
c/ \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^4\)
d/ \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)
Tính
a) (- 52)3 : 133 = (- 52 : 13)3 = (- 4)3 = - 64
b) \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left[\left(\dfrac{1}{2}\right)^2\right]^6\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)
\(=\left(\dfrac{1}{2}\right)^3\)
\(=\dfrac{1}{8}\)
c) \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{30}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}\)
\(=\left(\dfrac{1}{3}\right)^4\)
\(=\dfrac{1}{81}\)
d) \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3\)
\(=\left[\left(\dfrac{1}{2}\right)^3\right]^5:\left[\left(\dfrac{1}{2}\right)^4\right]^3\)
\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)
\(=\left(\dfrac{1}{2}\right)^3\)
\(=\dfrac{1}{8}.\)