K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)

nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)

b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)

=2017+1

=2018

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

\(A=\left(sin^247^0+cos^247^0\right)-2+1=1+1-2=0\)

24 tháng 8 2019

bài 2 là tính tan C nhá

mik vt nhầm

21 tháng 10 2015

\(A=\left(sin^212^o+sin^278^o\right)+\left(sin^21^o+sin^289^o\right)+\left(sin^273^o+sin^217^o\right)\)

\(A=\left(sin^290^o\right)+\left(sin^290^o\right)+\left(sin^290^o\right)\)

\(A=1+1+1=3\)

 

5 tháng 7 2017

Ta có \(\sin x=\cos\left(90^0-x\right)\)

\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)

\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)

\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)

15 tháng 8 2017

a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)

=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)

=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)

b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)

=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)

=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)

c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)