K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(P=cos^2a\left(1+cot^2a\right)=\dfrac{cos^2a}{sin^2a}=cot^2a\)

\(M=\dfrac{2cos^2a-\left(sin^2a+cos^2a\right)}{sina+cosa}=\dfrac{cos^2a-sin^2a}{sina+cosa}\)

\(=\dfrac{\left(cosa-sina\right)\left(cosa+sina\right)}{sina+cosa}=cosa-sina\)

29 tháng 9 2017

=\(\frac{sin^2a-2sina.cosa+cos^2a}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{tana+1}\)

16 tháng 7 2021

B A C a

Xét ΔBAC vuông tại B có a = ^A ta có :

a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)

b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)

c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)

d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)

e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)

\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)

f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)

\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)

12 tháng 8 2018

a, \(\tan^2\alpha\left(2\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+\cos^2\alpha+\sin^2\alpha-1\right)\)

\(=\tan^2\alpha\left(\cos^2\alpha+1-1\right)\)

\(=\tan^2\alpha.\cos^2\alpha=1\)

b, \(\sin\alpha-\sin\alpha.\cos^2\alpha\)

\(=\sin\alpha\left(1-\cos^2\alpha\right)\)

\(=\sin\alpha.\sin^2\alpha\)

13 tháng 8 2018

bn ơi lm j có công thức \(\tan^2a\times\cos^2a=1\) đâu

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân

\(Q=\frac{1+\text{ax}}{1-\text{ax}}\sqrt{\frac{1-bx}{1+bx}}\)

Ta có: \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow\text{ax}=\sqrt{\frac{2a-b}{b}}\Rightarrow1+\text{ax}=1+\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}}\)

\(1-\text{ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)

\(\Rightarrow\frac{1+\text{ax}}{1-\text{ax}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}-\sqrt{2a-b}}=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2b-2a}\left(1\right)\)

 \(bx=\frac{b}{a}\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}\left(2a-b\right)}{a}\Rightarrow\hept{\begin{cases}1-bx=\frac{a-\sqrt{b\left(2a-b\right)}}{a}\\1+bx=\frac{a+\sqrt{b\left(2a-b\right)}}{a}\end{cases}}\)

\(\Rightarrow\frac{1-bx}{1+bx}=\frac{a-\sqrt{b\left(2a-b\right)}}{a+\sqrt{b\left(2a-b\right)}}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{a^2-2ab+b^2}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{\left(a-b\right)^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow Q=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2\left(b-a\right)}.\frac{a-\sqrt{b\left(2a-b\right)}}{a-b}=\frac{\text{[}2a+2\sqrt{b\left(2a-b\right)}\text{]}\left(a-b\sqrt{2a-b}\right)}{2\left(a-b\right)^2}\)

\(\Rightarrow\frac{2\left[a^2-b\left(2a-b\right)\right]}{2\left(a-b\right)^2}=\frac{2\left(a^2-2ab+b^2\right)}{a\left(a-b\right)^2}=1\)