K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

a) - Thu gọn đa thức P(x):

P(x)=2+3x2−3x3+5x4−2x−x3+7x5=2+3x2−(3x3+x3)+5x4−2x+7x5P(x)=2+3x2−3x3+5x4−2x−x3+7x5=2+3x2−(3x3+x3)+5x4−2x+7x5 =2+3x2−4x3+5x4−2x+7x5

3 tháng 7 2018

1/ 

a,=>P(x)=2x3-4x2+5x-7-2x3+4x2-x+10=4x+3

=>Q(x)=-9x3-8x2+5x+11+9x3+8x2-2x-7=3x+4

b, Ta có: P(x)=0 => 4x+3=0 => x=-3/4

Q(x)=0 => 3x+4=0 => x=-4/3

c, P(x)+Q(x)=4x+3+3x+4=7x+7

P(x)-Q(x)=4x+3-(3x+4)=4x+3-3x-4=x-1

2/

a, x2-5x-6=0

=>x2-6x+x-6=0

=>x(x-6)+(x-6)=0

=>(x+1)(x-6)=0

=>\(\orbr{\begin{cases}x+1=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}}\)

b, (x+1)(x2+1)=0

Vì x2+1>0

=>x+1=0=>x=-1

c, \(-x^2-\frac{2}{5}=0\Rightarrow-x^2=\frac{2}{5}\Rightarrow x^2=\frac{-2}{5}\)

mà x2 lớn hoặc bằng 0  => không có x thỏa mãn

d, \(2x^2-x-6=0\Rightarrow2x^2-4x+3x-6=0\)

=>2x(x-2)+3(x-2)=0

=>(2x+3)(x-2)=0

=>\(\orbr{\begin{cases}2x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}}\)

3/

a, P(x)=(5x3-x3-4x3)+(2x4-x4)+(-x2+3x2)+1=x4+2x2+1

b, P(1)=14+2.12+1=1+2+1=4

P(-1)=(-1)4+2.(-1)2+1=1+2+1=4

c, Vì \(x^4\ge0;2x^2\ge0\Rightarrow x^4+2x^2\ge0\Rightarrow P\left(x\right)=x^4+2x^2+1\ge1>0\)

Vậy P(x) khoogn có nghiệm

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

20 tháng 6 2020

a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2

=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2

=> P(x) = x3 + x - x2 + 2

Sắp xếp : P(x) = x3 - x2 + x + 2

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1

=> Q(x) = -x3 + x2 + x + 1

Sắp xếp : Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x)

=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)

=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1

=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)

=> H(x) = 2x + 3

K(x) = P(x) - Q(x)

=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)

=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1

=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)

=> K(x) = 2x3 - 2x2 + 1

c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))

P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1

d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)

Vậy x = -3/2 là nghiệm của đa thức H(x)

P/s : K chắc :))

20 tháng 6 2020

a) Mình làm tắt

P(x) = x3 - x2 + x + 2

Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x) 

            =  x3 - x2 + x + 2 - x3 + x2 + x + 1

            = 2x + 3

K(x) = P(x) - Q(x)

        = x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )

        = x3 - x2 + x + 2 + x3 - x2 - x - 1

        = 2x3 - 2x2 + 1

c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1

P(-1) =  13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3

d) H(x) = 2x + 3

H(x) = 0 <=> 2x + 3 = 0

              <=> 2x = -3

              <=> = -3/2

Vậy nghiệm của H(x) = -3/2

a) dễ tự làm

b) A(x) có bậc 6

      hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3

B(x) có bậc 6

hệ số: 2 ; -5 ; 3 ; 4 ; 7

c) bó tay

d) cx bó tay

28 tháng 7 2019

a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2

P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2

P(x) = x3 + x2 + x + 2

Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1

Q(x) = x3 + x2 - x + 1

b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                       =  2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

                       = (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)

                       = 2x3 + 3

P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                  = 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1

                  = (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)

                  = 8x2 + 2x + 2x2 + 1

c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)- (-1)3 + 3.(-1) + 2

             = -2 - (-2) + 1 - (-1) - 3 + 2

             = 1

Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2

        = 16 - 4 + 4 - 8 + 6 + 2

        = 16

20 tháng 6 2020

Đáp án:

Giải thích các bước giải:

 a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2

            = -2x³ + x² + x - 2

Q(x) = x³ - 2x² + 3x + 1 + 2x²

        = x³ + 3x + 1

Sắp xếp theo thứ tự giảm dần của biến là:

P(x) = -2x³ + x² + x - 2

Q(x) = x³ + 3x + 1

b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1 

                      = -x³ + x² + 4x - 1

P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1 

                 = -4x³ + x² - 2x - 3