K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

17 tháng 6 2018

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

16 tháng 2 2019

1) \(x^3+6x^2+11x+6\)

\(=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

17 tháng 2 2019

2) \(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left(n^3-n-6n+6\right)\)

\(A=n\left(n^3-7n-6\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(A=n\left(n^3-7n-6\right)\left(n-1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n^3-7n-6\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-7n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n^3-n-6n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n^2+3n-2n-6\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left[n\left(n+3\right)-2\left(n+3\right)\right]\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+1\right)\left(n+3\right)\left(n-2\right)\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n-2\right)^2\left(n+3\right)^2\)

Rồi sao nữa còn nghĩ :))

30 tháng 7 2016

\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)

=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)

9 tháng 10 2016

1, a, = (3x+15-x+7 )( 3x+15+x-7)

= ( 2x +22)( 4x+8)

=8( x+11)( x+2)

b, = ( 5x-5y-4x - 4y)(5x-5y+4x+4y)

=(x-9y)(x-y)

2.a,ta có : (n+6)2- (n-6)2 = (n+6-n+6)( n+6+n-6) = 12.2n=24n chia hết cho 24 ( vì 24 chia hết cho 24) (ĐPCM)

b,

Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)