K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

a) Mk sửa lại chỗ \(\frac{5a-7b}{5a-7d}\) nhé, đề đúng phải là \(\frac{5a-7b}{5c-7d}\)

Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{7b}{7d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a+7b}{5c+7d}=\frac{5a-7b}{5c-7d}\left(đpcm\right)\)

b) Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

Đặt a/b=c/d=k

=>a=bk; c=dk

1: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2\cdot bk+15b}{5\cdot bk-7b}=\dfrac{2k+15}{5k-7}\)

\(\dfrac{2c+15d}{5c-7d}=\dfrac{2dk+15d}{5dk-7d}=\dfrac{2k+15}{5k-7}\)

Do đó: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

2: \(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

Do đó: \(\dfrac{a+2c}{b+2d}=\dfrac{a+c}{b+d}\)

hay (a+2c)(b+d)=(a+c)(b+2d)

a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)

\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)

\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)

\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)

=>ad=bc

hay a/b=c/d

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)

\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)

Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)

25 tháng 11 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

\(\Rightarrow\frac{2a}{2c}=\frac{7b}{7d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a+7b}{2c+7d}\) (1).

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a-7b}{2c-7d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a+7b}{2c+7d}=\frac{2a-7b}{2c-7d}.\)

\(\Rightarrow\frac{2a+7b}{2a-7b}=\frac{2c+7d}{2c-7d}\left(đpcm\right).\)

Chúc bạn học tốt!

16 tháng 8 2018

vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{7b}{7d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)

\(\Rightarrow\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)

\(\Rightarrow\frac{5a-7b}{5a+7b}=\frac{5c-5d}{7c+7d}\)

\(\Rightarrow\frac{5a-7b}{5a+7b}-\frac{5c-5d}{7c+7d}=0\left(ĐPCM\right)\)

7 tháng 8 2017

Bài 2:

a) Ta có : Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Theo tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}\left(1\right)\)

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a-7b}{5c-7d}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)Vậy...

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay các đẳng thức vừa tìm được , ta có :

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

\(=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

từ (1) và (2)=> đpcm

tik mik nha !!!

7 tháng 8 2017

1. Bạn xem lại đề bài nhé! Mình nghĩ là \(2x=3y=5z\) thì đúng hơn!

2.

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\)

Từ \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)(đpcm)

Vậy \(\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Vậy \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)