Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mk sửa lại chỗ \(\frac{5a-7b}{5a-7d}\) nhé, đề đúng phải là \(\frac{5a-7b}{5c-7d}\)
Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{7b}{7d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a+7b}{5c+7d}=\frac{5a-7b}{5c-7d}\left(đpcm\right)\)
b) Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
Đặt a/b=c/d=k
=>a=bk; c=dk
1: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2\cdot bk+15b}{5\cdot bk-7b}=\dfrac{2k+15}{5k-7}\)
\(\dfrac{2c+15d}{5c-7d}=\dfrac{2dk+15d}{5dk-7d}=\dfrac{2k+15}{5k-7}\)
Do đó: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)
2: \(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
Do đó: \(\dfrac{a+2c}{b+2d}=\dfrac{a+c}{b+d}\)
hay (a+2c)(b+d)=(a+c)(b+2d)
a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)
\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)
\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)
\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)
=>ad=bc
hay a/b=c/d
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)
Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{2a}{2c}=\frac{7b}{7d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a+7b}{2c+7d}\) (1).
\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a-7b}{2c-7d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+7b}{2c+7d}=\frac{2a-7b}{2c-7d}.\)
\(\Rightarrow\frac{2a+7b}{2a-7b}=\frac{2c+7d}{2c-7d}\left(đpcm\right).\)
Chúc bạn học tốt!
vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{7b}{7d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5c-7d}=\frac{5a+7b}{5c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}=\frac{5c-5d}{7c+7d}\)
\(\Rightarrow\frac{5a-7b}{5a+7b}-\frac{5c-5d}{7c+7d}=0\left(ĐPCM\right)\)
Bài 2:
a) Ta có : Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}\left(1\right)\)
Và \(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a-7b}{5c-7d}\left(2\right)\)
Từ (1) và (2)=> \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)Vậy...
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Thay các đẳng thức vừa tìm được , ta có :
\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)
\(=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
từ (1) và (2)=> đpcm
tik mik nha !!!
1. Bạn xem lại đề bài nhé! Mình nghĩ là \(2x=3y=5z\) thì đúng hơn!
2.
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\)
Từ \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)(đpcm)
Vậy \(\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\left(1\right)\)
\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
Vậy \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)