K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

a.

Ta có: \(\left\{{}\begin{matrix}-4a=-2\\8b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\) \(\Rightarrow I\left(2;-4\right)\)

\(R=\sqrt{2^2+\left(-4\right)^2+5}=5\)

b.

PTTT: \(\left(C\right):\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(2+1\right)\left(x+1\right)+\left(-4-0\right)\left(y-0\right)=0\)

\(\Leftrightarrow\left(C\right):3x-4y=-3\)

c.

Ta có: \(\Delta\perp d\Rightarrow\Delta:4x+3y+c=0\)

\(d\left(I,\Delta\right):\dfrac{\left|4\cdot2-3\cdot4+c\right|}{\sqrt{4^2+3^2}}=5\)

\(\Leftrightarrow\left|c-4\right|=25\) \(\Leftrightarrow\left[{}\begin{matrix}c=29\\c=-21\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\Delta:4x+3y+29=0\\\Delta:4x+3y-21=0\end{matrix}\right.\)

NV
6 tháng 6 2020

\(\overrightarrow{AB}=\left(3;-4\right)\) , gọi M là trung điểm AB \(\Rightarrow M\left(-\frac{1}{2};1\right)\)

Trung trực AB qua M và vuông góc AB nên có pt:

\(3\left(x+\frac{1}{2}\right)-4\left(y-1\right)=0\Leftrightarrow6x-8y+11=0\)

b/ \(AB=\sqrt{3^2+\left(-4\right)^2}=5\Rightarrow R=AB=5\)

Pt đường tròn: \(\left(x+2\right)^2+\left(y-3\right)^2=25\)

c/ Chắc là viết pttt?

Tiếp tuyến song song denta nên có pt: \(3x+4y+c=0\) (\(c\ne-1\))

d tiếp xúc (C) nên \(d\left(A;d\right)=R\Leftrightarrow\frac{\left|3.\left(-2\right)+4.3+c\right|}{\sqrt{3^2+4^2}}=5\)

\(\Leftrightarrow\left|c+6\right|=25\Rightarrow\left[{}\begin{matrix}c=19\\c=-31\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x+4y+19=0\\3x+4y-21=0\end{matrix}\right.\)

15 tháng 5 2023

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

16 tháng 5 2023

Toán lớp 10 không dùng đạo hàm.

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Lời giải:

Tiếp tuyến $(d')$ cần tìm song song với $(d): x+y-3=0$ nên có dạng $x+y+m=0$

Viết lại PTĐTr $(C): (x-1)^2+(y+2)^2=8$

$\Rightarrow$ tâm $I(1;-2)$ và bán kính $R=2\sqrt{2}$

Vì $(d')$ là tiếp tuyến của $(C)$ nên: \(d(I, d')=R\Leftrightarrow \frac{|x_I+y_I+m|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Leftrightarrow |m-1|=4\Rightarrow m=5\) hoặc $m=-3$. TH $m=-3$ loại do trùng với $(d)$

Vậy PTTT cần tìm là $x+y+5=0$

14 tháng 6 2020

a) Gọi tâm của đường tròn I cần tìm là I(a;b), bán kính R nên ta có:

\(\left\{{}\begin{matrix}-2ax+-2x\\-2by=4y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

=> I(1;2)

Bán kính đường tròn là:\(R=\sqrt{1^2+2^2+20^2}=9\sqrt{5}\)

NV
15 tháng 6 2020

1.

Đường tròn tâm \(I\left(0;0\right)\) bán kính \(R=1\)

\(d\left(I;A\right)=\frac{\left|3.0-4.0+5\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{5}{5}=1=R\)

\(\Rightarrow\) Đáp án A đúng

2.

Do d vuông góc \(2x-y+4=0\) nên d nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)