Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
x + y = 2
=> ( x + y)2 = 4
=> x2 + 2xy + y2 = 4
=> 10 + 2xy = 4
=> 2xy = 4 - 10 = -6
=> xy = -6/2 = -3
Ta có:
A = x3 + y3
A = (x + y)(x2 - xy + y2)
A = 2(10 + 3)
A = 26
b) Ta có:
x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có:
B = x3 + y3
B = (x + y)(x2 + xy + y2)
B = a[b + (a2 - b )/2]
B = ab + (a3 - b)/2
cho x+y=2(=)(x+y)^2=4(=)x^2+y^2+2xy=4
(=)10+2xy=4(=)2xy=-6(=)xy=-3
mà x^3+y^3=(x+y)(x^2+y^2-xy)
=2(10+3)=26
vậy x^3+y^3=26
x + y = a => (x + y)2 = a2 => x2 + xy + y2 = a2 => 2xy = a2 - 2b => xy = 1/2(a2 - 2b)
(x + y)3 = a3 =>x3 + y3 + 3xy(x + y) = a3 => x3 + y3 = a3 - 3*1/2(a2 - 2b)*a
=> x3 + y3 = a3 - 3/2a(a2 - 2b).
x+y=a
x2+y2=b
E=x3+y3=(x+y)(x2-xy+y2) =a(b-xy) { bh ta cần tính xy là ok}
Ta có: (x+y)2 =a2
<=>x2+xy+y2=a2
<=>x2+y2+xy=a2
<=> xy =a2-b { chỗ này thay x2+y2=b vào và chuyển vế }
E=a(b-xy)=a(b-a2-b)=-a3
x2 +y2=b\(\Leftrightarrow\)(x+y)2-2xy=b\(\Leftrightarrow\)a2-2xy=b\(\Leftrightarrow\)xy=\(\frac{a^2-b}{2}\)
E=x3+y3=(x+y)(x2-xy+y2)=a\(\times\)(b \(-\)\(\frac{a^2-b}{2}\))=\(\frac{3ab-a^3}{2}\)
\(x^3+y^3\) \(=\left(x+y\right)\left(x^2-xy+y^2\right)\) \(=a.\left(b-xy\right)\) \(=ab\) \(-\) axy
Có : \(x+y=a\Rightarrow x^2+2xy+y^2=a^2\)
\(\Leftrightarrow b+2xy=a^2\)
\(\Leftrightarrow xy=\frac{a^2-b}{2}\)
Lại có :
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a.\left(b-xy\right)=ab-a.\frac{a^2-b}{2}\)
\(\frac{x^2+y^2}{xy}=\frac{25}{12}\Leftrightarrow\frac{x}{y}+\frac{y}{x}=\frac{25}{12}\Leftrightarrow t+\frac{1}{t}=\frac{25}{12}\Leftrightarrow12t^2-25t+12=0\Leftrightarrow\int^{t=\frac{4}{3}\left(L\right)}_{t=\frac{3}{4}\left(TM\right)}\)
\(A=\frac{x-y}{x+y}=\frac{\frac{x}{y}-1}{\frac{x}{y}+1}=\frac{\frac{3}{4}-1}{\frac{3}{4}+1}=-\frac{1}{7}\)
dài lắm nên mình làm tắt
1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7
<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7
<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25
<=> -4x + 34 = -5x - 25
<=> x + 34 = -25
<=> x = -25 - 34
<=> x = - 59
2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x
<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x
<=> -x^2 - 3x - 8 = -x^2 - 2x + 9
<=> -3x - 8 = -2x + 9
<=> -x - 8 = 9
<=> -x = 9 + 8
<=> x = -17
3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2
<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2
<=> 2x^2 + 5x + 9 = 2x^2 - 8
<=> 5x + 9 = -8
<=> 5x = -8 - 9
<=> 5x = -17
<=> x = -17/5
4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3
<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3
<=> 12x - 33 = -7x + 3
<=> 19x - 33 = 3
<=> 19x = 3 + 33
<=> 19x = 36
<=> x = 36/19
5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)
<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72
<=> -16x + 64 = -72
<=> -16x = -72 - 64
<=> -16x = -136
<=> x = 136/16 = 17/2
6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3
<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3
<=> -x - 43 = 7x + 12
<=> -8x - 43 = 12
<=> -8x = 12 + 43
<=> -8x = 55
<=> x = -55/8
7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)
<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x
<=> 3x^2 - 12x + 11 = 3x^2 - x
<=> -12x + 11 = -x
<=> 11 = -x + 12x
<=> 11 = 11x
<=> x = 1
8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)
<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x
<=> -52 - x^3 = 5 - x^3 + 2x
<=> -52 = 5x + 2x
<=> -5x - 2x = 52
<=> -7x = 52
<=> x = -52/7
9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)
<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x
<=> 6x + 28 = 5 + 3x
<=> 6x + 28 - 3x = 5
<=> 3x + 28 = 5
<=> 3x = 5 - 28
<=> 3x = -23
<=> x = -23/3
10) (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)
<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7
<=> -53 - 4x = 6x - 17
<=> -4x = 6x + 36
<=> -4x - 6x = 36
<=> -10x = 36
<=> x = -36/10 = -18/5
(\(x+y\)) = a; (\(x^3\) + y3) = b.
\(x^3\) + y3 = (\(x\) + y).(\(x^2\) - \(xy\) + y2) (1)
Thay \(x\) + y = a; \(x^3\) + y3 = b vào biểu thức (1) ta có:
a.(\(x^2\) - \(xy\) + y2) = b
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\)
\(x^2\) + 2\(xy\) + y2 - 3\(xy\) = \(\dfrac{b}{a}\)
(\(x+y\))2 - 3\(xy\) = \(\dfrac{b}{a}\)
a2 - 3\(xy\) = \(\dfrac{b}{a}\)
3\(xy\) = a2 - \(\dfrac{b}{a}\)
\(xy\) = (\(a^2\) - \(\dfrac{b}{a}\)): 3
\(xy\) = \(\dfrac{a^3-b}{3a}\)
Thay \(xy\) = \(\dfrac{a^3-b}{3a}\) vào biểu thức:
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\) ta có
\(x^2\) - \(\dfrac{a^3-b}{3a}\)+ y2 = \(\dfrac{b}{a}\)
\(x^2\) + y2 = \(\dfrac{b}{a}\) + \(\dfrac{a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{3b+a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{a^3+2b}{3a}\)