Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 227 = 23.9 = ( 23)9 = 89
318 = 32.9 = ( 32)9 = 99
b, Ta thấy 8 < 9 nên 227 < 318
Ta có: \(\left\{{}\begin{matrix}x^3y^5z^7.x^3y^2z=2^7\\\dfrac{x^3y^5z^7}{x^3y^2z}=2^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^6y^7z^8=2^7\\y^3z^6=2^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}yz^2=2\\\left(xyz\right)^6.yz^2=2^7\end{matrix}\right.\)
\(\Rightarrow\left(xyz\right)^6=2^6\)
\(\Rightarrow\left\{{}\begin{matrix}xyz=2\\xyz=-2\end{matrix}\right.\)
Ta có: \(f\left(0\right)=a.0^2+b.0+c=0+0+c=c\) mà \(f\left(0\right)=1\)\(\Rightarrow c=1\)
\(f\left(1\right)=a.1^2+b.1^2+c=a+b+1\)mà \(f\left(1\right)=2\)\(\Rightarrow a+b+1=2\)\(\Rightarrow a+b=1\)
\(f\left(2\right)=a.2^2+2.b+c=4a+2b+1\)mà \(f\left(2\right)=8\)\(\Rightarrow4a+2b+1=8\)\(\Rightarrow4a+2b=7\)\(\Rightarrow2\left(2a+b\right)=7\)\(\Rightarrow2a+b=3,5\)\(\Rightarrow a+\left(a+b\right)=3,5\)\(\Rightarrow a+1=3,5\)\(\Rightarrow a=2,5\)
Lại có: \(a+b=1\)\(\Rightarrow2,5+b=1\)\(\Rightarrow b=1-2,5=-1,5\)
Ta có: \(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=2,5.4+\left(-1.5\right).\left(-2\right)+1=10+3+1=14\)
copy nhé ai rãnh mà làm
A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1
B=−x2+4x−7B=−x2+4x−4−3B=−(x2−4x+4)−3B=−(x−2)2−3Do (x−2)2≥0∀x⇒−(x−2)2≤0∀x⇒B=−(x−2)2−3≤−3∀xDấu “=” xảy ra khi: (x−2)2=0⇔x−2=0⇔x=2Vậy B(Max)=−3 khi x=2
a,2x−x2=−(x2−2x+1)+1a,2x−x2=−(x2−2x+1)+1
=−(x−1)2+1≤1∀x=−(x−1)2+1≤1∀x
Vậy GTLN của biểu thức là 1 khi x - 1 =0 => x = 1
b,−2x2−4x+6=−2(x2+2x+1)+8b,−2x2−4x+6=−2(x2+2x+1)+8
=−2(x+1)2+8≤8∀x=−2(x+1)2+8≤8∀x
vậy GTLN của bt là 8 khi x + 1 =0 => x = -1
~ Học tốt~
a. \(-\left(x^2-2x+1\right)+1.\)
\(-\left\{\left(x^2-x\right)-\left(x-1\right)\right\}+1\)
\(-\left\{x\left(x-1\right)-\left(x-1\right)\right\}+1\Leftrightarrow-\left(x^2-1\right)+1\le1\) " =" xảy ra khi x^2=1
\(b.-2x^2-4x-2+8\)
\(-2\left(x^2+2x+1\right)+8\)
\(-2\left(x+1\right)^2+8\le8\) dấu = xảy ra khi x=-1
Lời giải:
$(x^3-3x^2+2x-6):(x-3)=[x(x-3)+2(x-3)]:(x-3)$
$=(x-3)(x+2):(x-3)=x+2$
-------------------
$(x^3-8):(x-2)=(x-2)(x^2+2x+4):(x-2)=x^2+2x+4$