3+b
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

khó úa z mik ko giai duoc k cho mik ik mik kb cho

17 tháng 7 2017

câu b có phải 2011 hông zậy mà sao lạ dữ

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

29 tháng 11 2019

Các bạn giúp mình nhé ! Mình đang cần gấp

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)

Mà a+b+c+d khác 0

=> b+c+d = a+c+d = b+a+d = c+b+a

=> b = a = c = d

Ta có:

\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)

\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)

\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)

\(P=1-1-1-1=-2\)

27 tháng 8 2020

a) Ta có: \(3a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\) (1)

Và \(4b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\) (2)

Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

27 tháng 8 2020

a) \(\hept{\begin{cases}3a=2b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\Rightarrow}\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

-a - b + c = -52 => -( a + b - c ) = -52

                         => a + b - c = 52

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

b) \(C=\frac{2x^2-5x+3}{2x-1}\)( ĐKXĐ : \(x\ne\frac{1}{2}\))

\(\left|x\right|=\frac{3}{2}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)

Với x = 3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(\frac{3}{2}\right)^2-5\cdot\frac{3}{2}+3}{2\cdot\frac{3}{2}-1}=\frac{0}{2}=0\)

Với x = -3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(-\frac{3}{2}\right)^2-5\cdot\left(-\frac{3}{2}\right)+3}{2\cdot\left(-\frac{3}{2}\right)-1}=\frac{15}{-4}=-\frac{15}{4}\)

7 tháng 3 2018

Ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)

\(=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)

Do đó : 

\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)

\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)

\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào A ta có : 

\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)

\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)

\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(A=-3\)

Vậy \(A=-3\)

Chúc bạn học tốt