Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài1
vì 148 chia ht cho 7 và 111 chia ko chia ht cho 7 => a ko chia ht cho 7
bài 1 :
ta có : a= 148 . q + 111
a= 37.4.q+(37.3)
a = 37 . ( 4.q + 3 ) chia hết cho 37
vậy a chia hết cho 37
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n
a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n^2+2n\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)\)
Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3
=>n3+3n2+2n chia hết cho 3
b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5
Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)
A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5
+)Nếu n chia hết cho 5
=>n\(\in\){0;5}
+)Nếu n+1 chia hết cho 5
=>n\(\in\){4;9}
+)Nếu n+2 chia hết cho 5
=>n\(\in\){3;8}
Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15
Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.
Ta có:
n(n + 1)(n + 2)
= (n² + n)(n + 2)
= n³ + 2n² + n² + 2n
= n³ + 3n² + 2n
Mà n(n + 1)(n + 2) là tích của ba số nguyên liên tiếp (do n là số nguyên)
⇒ n(n + 1)(n + 2) ⋮ 3
⇒ (n³ + 3n² + 2) ⋮ 3
Ta có:
n³ + 11n
= n³ + 3n² + 2n - 3n² + 9n
= (n³ + 3n² + 2n) - 3n(n - 3)
Ta có:
3 ⋮ 3
⇒ 3n(n - 3) ⋮ 3 (với mọi n nguyên)
Mà (n³ + 3n² + 2n) ⋮ 3 (cmt)
⇒ [(n³ + 3n² + 2n) - 3n(n - 3)] ⋮ 3
Vậy (n³ + 11n) ⋮ 3 với mọi số nguyên n