Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC đều
nên AB=AC=BC
=>AB=AC=BC=(AB+AC+BC)/3=8(dm)
Ta có: ΔABC đều
mà CM là đường cao
nên M là trung điểm của AC và CM là tia phân giác của góc ACB
Ta có: ΔABC đều
mà BN là đường cao
nên N là trung điểm của AC và BN là tia phân giác của góc ABC
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=4(dm) và MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
b: Xét ΔMNB có \(\widehat{MBN}=\widehat{MNB}\)
nên ΔMNB cân tại M
=>MN=MB=NC=4(dm)
Chu vi hình thang BMNC là:
BM+MN+NC+BC=4+4+4+8=20(dm)
Giải các phương trình:
\(a,\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(b,x^4-30x^2+31x-30=0\)
a, Đặt \(x^2-5x=a\)
\(\Rightarrow\)\(a^2+10a+24=0\)
\(\Rightarrow a^2+4a+6a+24=0\)
\(\Rightarrow\left(a+4\right)\left(a+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+4=0\\a+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2-5x+4=0\left(1\right)\\x^2-5x+6=0\left(2\right)\end{cases}}}\)
Giải pt (1) ta có : \(x^2-5x+4=0\)
\(\Rightarrow x^2-4x-x+4=0\)
\(\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Giải pt (2) ta có : \(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy \(S=\left\{1;2;3;4\right\}\)
\(x^4-30x^2+31x-30=0\)
\(\Rightarrow x^4-30x^2+x+30x-30=0\)
\(\Rightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Mà \(x^2-x+1>0\)với \(\forall\)\(x\)
\(\Rightarrow x^2+x-30=0\)
\(\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow x\left(x-5\right)+6\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy \(S=\left\{5;-6\right\}\)
a) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt t = x2+ x => \(t\left(t-2\right)=24\) \(\Leftrightarrow t^2-2t=24\Leftrightarrow t^2-2t-24=0\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)
-Nếu t = -4 thì x2 + x = -4 \(\Leftrightarrow x^2+x+4=0\left(voly\right)\)
-Nếu t = 6 thì x2 + x = 6 \(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 2; -3 }
b) \(2x^3+9x^2+7x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\) Hoặc x + 2 = 0 hoặc x + 3 = 0 hoặc 2 x - 1 = 0
\(\Leftrightarrow\) x = -2 hoặc x = -3 hoặc x = 1/2
Vậy phương trình có tập nghiệm S = { -2; -3; 1/2 }
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
Tk mk nha
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
:4
Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Vì a,b là các số nguyên tố lớn hơn 3
=> a,b đều lẻ
=> \(\hept{\begin{cases}\left(a-b\right)⋮2\\\left(a+b\right)⋮4\end{cases}}\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)⋮8\)
Ta xét 2 số a,b trong 2 TH sau:
Vì a,b không chia hết cho 3 nên
Nếu a,b cùng dư khi chia cho 3 => a-b chia hết cho 3
Nếu a,b khác dư khi chia cho 3 => a+b chia hết cho 3
=> \(\left(a-b\right)\left(a+b\right)\) luôn chia hết cho 3
Từ 2 điều trên => \(a^2-b^2⋮24\)
a) 27x^3 - 27x^2 + 18x - 4 = 27x^3 - 9x^2 - 18x^2 + 6x + 12x - 4
= ( 27x^3 - 9x^2 ) - ( 18x^2 - 6x ) + ( 12x - 4 )
= 9x^2 ( 3x - 1 ) - 6x ( 3x - 1 ) + 4 ( 3x - 1 )
= ( 9x^2 - 6x + 4 ) ( 3x - 1 )
b) 2x^3 - x^2 + 5x + 3 = 2x^3 + x^2 - 2x^2 - x + 6x + 3
= ( 2x^3 + x^2 ) - ( 2x^2 + x ) + ( 6x + 3 )
= x^2 ( 2x + 1 ) - x ( 2x + 1 ) + 3 ( 2x + 1 )
= ( x^2 - x + 3 ) ( 2x+ 1 )
c) x^3 + 4x^2 - 29x + 24 = x^3 - x^2 + 5x^2 - 5x - 24x + 24
= ( x^3 - x^2 ) + ( 5x^2 - 5x ) - ( 24x - 24 )
= x^2 ( x - 1 ) + 5x ( x - 1 ) - 24 ( x - 1 )
= ( x^2 + 5x - 24 ) ( x - 1 )
= ( x^2 + 8x - 3x - 24 ) ( x -1 )
= (( x^2 + 8x ) - ( 3x + 24 )) ( x - 1 )
= ( x ( x + 8 ) - 3 ( x + 8 ) ) ( x - 1 )
= ( x - 3 ) ( x+ 8 ) ( x-1 )