Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐTV sai òi
GTNN cảu P = 0 tại y = 2012 ; x = 4018
GTNN của P = 2015 khi y= 1 ; x = 2
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:
\(C=0+0+0+1\)
C = 0
a) Có thể đề là: P = (x - 2y)2 + (y - 2012)2014
Vì (x - 2y)2 \(\ge\) 0 ; (y - 2012)2 \(\ge\) 0 với mọi x; y nên P = (x - 2y)2 + (y - 2012)2014 \(\ge\) 0 với mọi x; y
=> P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0
=> y = 2012 và x = 2y = 4024
b) Vì (x + y - 3)4 \(\ge\) 0 ; (x - 2y)2 \(\ge\) 0 => Q = (x + y - 3)4 + (x - 2y)2 + 2015 \(\ge\) 0 + 0 + 2015 = 2015 với mọi x; y
=> Q nhỏ nhất = 2015 khi x + y - 3 = 0 và x - 2y = 0
=> x = 2y và x + y =3 => 3y = 3 => y = 1 ; x = 2
a) P không có giá trị nhỏ nhất vì lấy y là số lớn tùy ý và x = 2y khi đó P = 0 - (y - 2012)2014 sẽ là số âm có giá trị tuyệt đối rất lớn. Có thể câu hỏi ra là dấu + trước biểu thức (y - 2012)2014.
Nếu P = (x -2y)2 + (y - 2012)2014 thì P > 0 + 0 (lũy thừa bạc chẵn bao giờ cũng không âm)
P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0, hay là y = 2012 và x = 2.y = 4024
b) Q = (x + y - 3)2 + (x - 2y)2 + 2015 > 0 + 0 + 2015 = 2015. Q nhỏ nhất = 2015 khi x + y -3 = 0 và x - 2y = 0
=> x + y =3 (1)
x = 2y (2)
Thay x = 2y vào (1)
=> 2y + y = 3 => 3y = 3 => y = 1
=> x = 2.y = 2
Vậy Q nhỏ nhất = 15 khi x = 2 và y = 1