Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow3x^3-x^2+3x^2-x-6x+2-a-2⋮3x-1\)
=>-a-2=0
hay a=-2
b: \(-x^2+x-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)
c: \(P\left(x\right)=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi x=5/2
d: \(f\left(x\right)=x^2-4x+4+5=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x=2
\(1.x^2-4x+4=8\left(x-2\right)^5\)
\(\Leftrightarrow\left(x-2\right)^2-8\left(x-2\right)^5=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[1-8\left(x-2\right)^3\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\1-8\left(x-2\right)^3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\left(x-2\right)^3=\frac{1}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}}\)
\(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)(Vì a+b=1)
\(=4a^2-4ab+3b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a+b\right)^2=-2\)
b, D = 2x^2-4x+3
D= 2(x^2-2x+1) +1
D= 2(x-1)^2+1 luôn lớn hơn hoặc bằng 1
V ậy giá trị nhỏ nhất của D =1 khi x=1
Bài 2:
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)
Bài 3:
\(M=x^6-x^4-x^4+x^2+x^3-x\)
\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)
\(=8x^3-8x+8\)
\(=8\cdot8+8=72\)
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
1. Đặt \(t=x^2,t\ge0\)
\(3x^4+4x^2-2\ge3.0+4.0-2=-2\)
=> MIN = -2 khi x = 0
2. \(\left(x^2+2\right)\left(x+1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+2=0\\x+1=0\end{array}\right.\)
Vì \(x^2+2\ge2>0\) => Vô nghiệm
Vậy x+1 = 0 => x = -1
3. Kết quả là 10
4. Ko rõ đề
a: x là đơn thức một biến
b: A(x)=-x^2+2/3x-1
Đặt A(x)=0
=>-x^2+2/3x-1=0
=>x^2-2/3x+1=0
=>x^2-2/3x+1/9+8/9=0
=>(x-1/3)^2+8/9=0(vô lý)
c: B(-3)=(-3)^2+4*(-3)-5
=9-5-12
=4-12=-8