K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)

b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)

1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)

2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)

3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)

3\(\sqrt{5}\)= \(\sqrt{3^2.5}\)=\(\sqrt{45}\)

-5\(\sqrt{2}\)= \(-\sqrt{5^2.2}\)= -\(\sqrt{50}\)

\(\dfrac{-2}{3}\sqrt{xy}\) = \(-\sqrt{\left(\dfrac{2}{3}\right)^2xy}\) = -\(\sqrt{\dfrac{4}{9}xy}\)

x\(\sqrt{\dfrac{2}{x}}\)= \(\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\)

24 tháng 9 2017

\(3\sqrt{5}=\sqrt{45}\)

25 tháng 7 2021

\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}=\frac{2xy^2}{3ab}\frac{3\sqrt{a^2.a}\sqrt{\left(b^2\right)^2}}{2\sqrt{2xy^2.y}}\)

\(=\frac{2xy^2}{3ab}\frac{3a\sqrt{a}b^2}{2y\sqrt{2xy}}=\frac{6xy^2ab^2\sqrt{a}}{6aby\sqrt{2xy}}=\frac{bxy\sqrt{a}}{\sqrt{2xy}}\)

\(=\frac{bxy\sqrt{2axy}}{2xy}=\frac{b\sqrt{2axy}}{2}\)

14 tháng 6 2017

a )\(\sqrt{5x^2}\)

b )\(-\sqrt{13x^2}\)

c )\(\sqrt{11x}\)

d)\(-\sqrt{-29x}\)

Bài 2: 

a: \(=\sqrt{\left(\dfrac{1}{5a}\right)^2}=\dfrac{1}{\left|5a\right|}=\dfrac{-1}{5a}\)

b: \(=\dfrac{1}{3}\cdot15\cdot\left|a\right|=5\left|a\right|\)

20 tháng 7 2016

a)\(=-\sqrt{\left(\frac{a}{b}\right)^2\cdot\frac{b}{a}}\)

\(=-\sqrt{\frac{a^2}{b^2}\cdot\frac{b}{a}}\)

\(=-\sqrt{\frac{a}{b}}\)

20 tháng 7 2016

b) \(=\sqrt{\left(\frac{1}{2x-1}\right)^2\cdot5\left(4x^2-4x+1\right)}\)

\(=\sqrt{\frac{5}{\left(2x-1\right)^2}\cdot\left(2x-1\right)^2}\)

\(=\sqrt{5}\)

14 tháng 6 2017

a )\(x\sqrt{7}\)

b )\(-2y\sqrt{2}\)

c )\(5x\sqrt{x}\)

d)\(4y^2\sqrt{3}\)

5 tháng 10 2020

a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)

ĐK : x ≥ 0

<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)

<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)

<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)

<=> \(\sqrt{x}\times\frac{2}{3}=5\)

<=> \(\sqrt{x}=\frac{15}{2}\)

<=> \(x=\frac{225}{4}\)( tm )