Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có 10b-4b+3b=9b
mà 9b chia hết cho 9
hay 10b-4b+3b chia hết cho 9
a,
Gọi hai số chẵn liên tiếp là \(n-1;n+1\)
Đặt: \(\left\{{}\begin{matrix}n+1=2a\\n-1=n+1-2=2a-2=2\left(a-1\right)\end{matrix}\right.\)
Ta có:
\(\left(n+1\right)\left(n-1\right)=2a.2\left(a-1\right)=4a\left(a-1\right)\)
Trong hai số a và a-1 chắc chắn có 1 số chia hết cho 2
\(\Rightarrow\left(2+1\right)\left(n-1\right)=4a\left(a-1\right)=4.2k=8k⋮8\)
Bài I :
1 ) \(3x\left(x-5\right)-\left(3x+2\right)\left(3x-2\right)=31\)
\(\Leftrightarrow3x^2-15x-9x^2+4-31=0\)
\(\Leftrightarrow-6x^2-15x-27=0\)
Phương trình vô nghiệm .
2 )
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=16\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Bài II :
\(B=n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\)
\(=n^2+5n-n^2-17n+60\)
\(=-12n+60\)
\(=-12\left(n-5\right)\)
Vì \(-12\) chia hết cho 6 \(\Rightarrow-12\left(n-5\right)\) chia hết cho 6 .
Vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+20\right)\) chia hết cho 6 (đpcm)
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
\(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)(*)
\(=n^3-n^2-5n+2-n^3+2\)
\(=-n^2-5n+4\)
Đề sai ko bạn ? thay x = 0 không thỏa mãn
Bonking mik cx nghĩ đề sai, tính mãi hk ra nên mới hỏi các bạn ik