Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Đề bài > not \(\ge\)
Giả sử đpcm là đúng , khi đó , ta có :
\(x^2+y^2+8>xy+2x+2y\)
\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)
Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm
2 ) ĐK : a ; b ; c không âm
Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)
3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)
\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5
Chứng minh
a) a5-a chia hết cho 5
b) a7-a chia hết cho 7
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5
nhé !
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
a.
20092008 + 20112010 = (20092008 +1) + ( 20112010 - 1)
Vì: 20092008 + 1 = ( 2009 + 1) ( 20092007 - ...)
= 2010 . ( ..) chia hết cho 2010 (1)
20112010 - 1 = ( 2011 - 1)(20112009 +...)
= 2010 .(...) chia hết cho 2010 (2)
Từ (1) và (2) ta có đpcm
b.
Tham khảo tại đây nha:
[Toán 8] giúp mình mấy bài toán chứng minh | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam