K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

Bài 1:

\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1+1-\dfrac{1}{50}\)

\(=2-\dfrac{1}{50}\)

\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)

\(\Rightarrow A< 2\left(đpcm\right)\)

Vậy...

27 tháng 3 2017

Arigato Gozaimatsu

9 tháng 5 2016

 

Gọi tử số của B là a và mẫu là b

\(a=1+2+2^2+2^3+...+2^{2008}\)

\(2a=2+2^2+2^3+...+2^{2009}\)

\(2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)

\(a=2^{2009}-1\)

\(a=\frac{2^{2009}-1}{1-2^{2009}}\)

\(a=1\)

$2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)$2aa=(2+22+23+...+22009)(1+2+22+...+22008)

$a=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2008}-2^{2008}\right)+2^{2009}-1$a=(22)+(2222)+...+(2200822008)+220091

$a=0+0+0+2^{2009}-1$a=0+0+0+220091

$a=2^{2009}-1$a=220091

$B=\frac{2^{2009}-1}{1-2^{2009}}$B=220091122009 

B= -1

15 tháng 6 2018

b, 2+ 22 + 2+ ... + 230

= ( 21 + 2+ 2+ 2+ 25 + 26 ) + ( 27 + 2+ 29 + 210 + 211 + 212 ) + ... + ( 225 + 226 + 227 + 228 + 229 + 230 )

= 21 . ( 20 + 21 + 22 + 23 + 24 + 25 ) + 27 . ( 20 + 2+ 22 + 23 + 24 + 2) + ... + 225 . (  20 + 2+ 22 + 23 + 24 + 25  )

= 2 . 63 + 27 . 63 + ... + 225 . 63

= 63 . ( 2 + 27 + ... + 225 )

= 21 . 3 . (  2 + 27 + ... + 225 ) \(⋮\)21

15 tháng 6 2018

tớ chỉ giải phần a thôi nhé

ta có:1/22 < 1/1+2

        1/3< 1/2+3

        .......

        1/502<1/49+50

gọi biểu thức trên là A

Ta có : A<1/1+2 +1/2+3 +.....+1/49+50

         A<1-1/2+1/2-1/3 +......+1/49-1/50

         A<1-1/50 mà 1-1/50<2 nên A<2

 nghĩa là biểu thức trên nhỏ hơn hai

4 tháng 5 2017

1)Ta thấy: \(\dfrac{1}{n^2}=\dfrac{1}{n.n}< \dfrac{1}{\left(n-1\right)n}\)

=>A=\(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}...+\dfrac{1}{50^2}< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49.50}\)

A<\(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

Vậy A<2

2)Ta có:2S=6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\)

2S-S=(6+3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^8}\))-(3+\(\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^9}\))

=>S=6-\(\dfrac{3}{2^9}=\dfrac{6.2^9-3}{2^9}\)

Vậy S=\(\dfrac{6.2^9-3}{2^9}\)

4 tháng 5 2017

Các bạn cố giúp mink nhé mai mình phải nộp rồi

20 tháng 4 2016

Có A = 1/12 + 1/22+ 1/32+ ...+ 1/502                                                                            => A< 1/12 + 1/1*2 + 1/2*3 + 1/3*4+ ...+ 1/49*50                                                      A<  1+ 1- 1/2+ 1/2- 1/3 + 1/3- 1/4+ ...+ 1/49 - 1/50                                                      A<  1+  1-1/50 = 1+ 49/50.                                                                                          Mà 1+49/50 < 1+1=2.    => A<2 (ĐPCM)

A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)

A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

A<2-\(\frac{1}{50}\)<2

=>A<1(câu 1)

 

 

 

5 tháng 5 2017

A= \(\dfrac{1}{1^2}\)