Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)\)
Vậy ab + ba chia hết cho 11
\(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-c=\left(100a-a\right)+\left(10b-10b\right)+\left(c-100c\right)=99a-99c=99\left(a-c\right)\)Vậy abc - cba chia hết cho 99
a)a. ab+ba = 10a+b+10b+a = 11a+11b = 11(a+b) chia hết cho 11
=> đpcm
b) Ta có:
abc ‐ cba = 100a+10b+c‐100c‐10b‐a = ﴾100a‐a﴿ + ﴾10b‐10b﴿ ‐ ﴾100c‐c﴿ = 99a ‐ 99c = 99. ﴾a‐c﴿ chia hết cho 99 ﴾đpcm﴿
a) Hình như cái kia là ba chứ ko fai ab nếu là ab thì khó mà chia hết
Ta có: ab + ba = 10a+b+10b+a=11a+11b=11(a+b) chia hết cho11
=> ab + ba chia hết cho11
a) ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b) chia hết cho 11
b) abc - cba = (100a + 10b + c) - (100c + 10b + a) = 99a - 99c = 99(a - c) chia hết cho 99
\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21
a, ab+ba=(ax10+b)+(bx10+a)
=ax10+a+bx10+b
=ax11+bx11
=(a+b)x11
Vi 11 chia het cho 11 nen (a+b)x11 chia het cho 11.
b, abc-cba= (ax100+bx10+c)-(cx100+bx10+a)
= ax100-a+bx10-bx10+c-cx100
= ax99+-cx99
= (a+-c).99
VI 99 chia het cho 99 nen (a+-c)x99 chia het cho 99