K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)

+ xét a chia hết cho 3 (đpcm)

+ xét a chia 3 dư 1 => a = 3k + 1      

=> a +  2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3

+ xét a chia 3 dư 2 => a = 3k + 2

=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3

vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

b, đề không rõ lắm

27 tháng 2 2020

Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3

\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)

\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)

=> A \(⋮3\left(ĐPCM\right)\)

7 tháng 11 2016

a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)

- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)

- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)

Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)

7 tháng 11 2016

Cám ơn bạn nha

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

15 tháng 10 2015

a,

Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:

a=3k hoạc a=3k+1 hoặc a=3k+2

* Nếu a=3k thì a sẽ chia hết cho 2.                                                                                   (1)

* Nếu a=3k+2 thì a+1=3k+2

                          a    =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3                                                                                          (2)

* Nếu a=3k+1 thì a+2=3k+1

                          a   =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=>  3k+3 chia hết cho 3 hay a+2 chia hết cho 3                                                                                         (3)

Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

a) Gọi 3 số tự nhiên liên tiếp là : a , a + 1 , a + 2 

+ a là số chia hết cho 3 thì : a + 1 chia 3 dư 1 

                                             a + 2 chia 3 dư 2 

+ a là số ko chia hết cho 3 ; - a chia 3 dư 1 thì a + 1 chia cho 3 dư 2 

                                                                         a + 2 chia hết cho 3 

                                            - a chia 3 dư 2 thì a + 1 chia hết cho 3 

                                                                         a + 2 chia 3 dư 1 

Vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 

11 tháng 7 2017

a, ta có 2 số liên tiếp lần lượt là n và n +1 <=> n^2 +n

giả thiết nếu n là lẻ thì lẻ +lẻ = chẵn; chia hết cho 2

nếu n là chắn thì chẵn bình phg  công chẵn sẽ ra chẵn => chia hết cho 2 

28 tháng 2 2016

Ta có \(17^n+1^n\) chia hết cho 18 nên chia hết cho 3

Vậy \(\left(17^n+1\right)\left(17^n+2\right)\) chia hết cho 3

28 tháng 2 2016

Ta có: 17n chia 3 dư 1 hoặc dư 2

Nếu 17^n chia 3 dư 1 => 17^n + 2 chia hết cho 3 => Tích chia hết cho 3

Nếu 17^n chia 3 dư 2 => 17^n + 1 chia hết cho 3 => Tích chia hết cho 3

Vậy (17^n + 1)(17^n + 2) chia hết cho 3 

ĐK đúng: n thuộc N