Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế trái ta có :
\(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{1}{a}-\frac{1}{a+1}-\left(\frac{1}{a+1}-\frac{1}{a+2}\right)=\frac{1}{a}-\frac{1}{a+1}-\frac{1}{a+1}+\frac{1}{a+2}\)
\(\frac{1}{a}-\frac{2}{a+1}+\frac{1}{a+2}=\frac{\left(a+1\right)\left(a+2\right)-2a\left(a+2\right)+a\left(a+1\right)}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{a^2+3a+2-2a^2-4a+a^2+a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
Vậy Vế trái = Vế phải
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1
Bài 1 :
\(\frac{a}{b}=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{9}+\)\(\frac{1}{10}\)
\(=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
\(=\frac{13.\left(84+70+63+60\right)}{2520}\)
\(=\frac{13.277}{2520}\)
Phân số \(\frac{13.277}{2520}\)tối giản nên \(a=13m\left(m\in Nsao\right)\)
Vậy a chia hết cho 13
Bài 2 :
Ta có : \(\frac{a}{b}+\frac{a'}{b'}=n\)trong đó a và b nguyên tố cùng nhau : \(a'\)và \(b'\)nguyên tố cùng nhau , \(a\in N\)
Suy ra :\(\frac{ab'+a'b}{bb'}=n\Leftrightarrow ab'+a'b=nbb'\)
Từ (1) ta có \(\left(ab'+a'b\right)⋮b\)mà \(a'b⋮b\)nên \(ab'⋮b\)nhưng a và b nguyên tố cùng nhau
Suy ra ;\(b'⋮b\left(2\right)\)
Tương tự ta cũng có \(b⋮b\left(3\right)\)
Từ (2 ) và (3 ) suy ra \(b=b'\)
Chúc bạn học tốt ( -_- )
100 + 100 + 100
Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho
Ta có : \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}\) Với mọi a
=> \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}\)
Vậy....
Sửa đề : Chứng tỏ rằng \(\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a.\left(a+1\right)}\)
Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{1}{a.\left(a+1\right)}\)
\(\Rightarrowđpcm\)