K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a) Theo bài ra ta có:
abcabc = 1000abc + abc
             = ( 1000 +1)abc
             =1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
       1001 chia hết cho 7 => abcabc chia hết cho 7.
       1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3

5 tháng 11 2018

Ta có : 

abcabc = 1000abc + abc 

= 1001 . abc 

= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13

3 tháng 8 2016

Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.13.77\)

\(\Rightarrow\) \(\overline{abcabc}\) chia hết cho 77

\(\Rightarrow\overline{abcabc}\) là bội của 77(đpcm)

18 tháng 9 2016

a ) aaa=a.111=a.(3.37)

          =>aaa bao giờ cũng chia hết cho 37

b) aaaaaa=a.111111=a.(3.37037)

=> aaaaaa bao giờ cũng chia hết cho 3

c) abcabc=abc.1001=abc.(7.13.11)

=> abcabc bao giờ cũng chia hết cho 13;11

d) ab+ba=(10a+b)+(10b+a)=(10a+a)+(10b+b)=11a+11b

=> ab+ba chia hết cho 11

ủng hộ nha

18 tháng 9 2016

a) aaa = 111a = 37 . 3 . a 

b) aaaaaa = 111111a = 37037 . 3 . a 

c) abcabc = 1001abc = 77.13 . abc 

abcabc = 1001abc = 77.13.abc = 7 .11.13.abc 

d) (ab + ba) = 10a + b + 10b + a =11a + 11b = 11.(a+b) 

14 tháng 10 2015

a)aaa=a*111 mà 111=3*37 chia hết cho 37

b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7

c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.

14 tháng 10 2018

a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.

Chắc là đề cho \(\overline{abc}⋮3\)

b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)

Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.

Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.

Chúc bạn học tốt!

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)