Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bài sai không chia hết.
b) 817-279-913
=328-327-326
=326 ( 9 - 3 - 1 )
= 326.5 chia hết cho cả 9 và 5 vì ( 9;5 ) = 1 vậy chia hết cho 45
\(\text{a) }S=4+4^2+4^3+...+4^{40}\)
\(S=\left(4+4^2+4^3+4^4\right)+\left(4^5+4^6+4^7+4^8\right)+...+\left(4^{37}+4^{38}+4^{39}+4^{40}\right)\)
\(S=4\left(1+4+4^2+4^3\right)+4^5\left(1+4+4^2+4^3\right)+...+4^{37}\left(1+4+4^2+4^3\right)\)
\(S=\left(1+4+4^2+4^3\right)\left(4+4^5+...+4^{37}\right)\)
\(S=85.\left(4+4^5+...+4^{37}\right)\)
\(S=17.5.\left(4+4^5+...+4^{37}\right)\)
\(\text{Vậy S là bội của 17}\)
\(\text{b) Làm tương tự như câu a) - nhóm 4 hạng tử}\)
\(\text{c) }N=81^7-27^9-9^{13}\)
\(N=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(N=3^{4.7}-3^{3.9}-3^{2.13}\)
\(N=3^{28}-3^{27}-3^{26}\)
\(N=3^{24}.\left(3^4-3^3-3^2\right)\)
\(N=3^{24}.45\)
\(\text{Vậy N là bội của 45}\)
\(\text{d) }P=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(P=3^n.3^3+3^n.3+2^n.8+2^n.4\)
\(P=3^n.\left(3^3+3\right)+2^n.\left(8+4\right)\)
\(P=3^n.30+2^n.12\)
\(P=6.\left(3^n.5+2^n.2\right)\)
\(\text{Vậy P là bội của 6}\)
ta có : 817-279-326=328-327-326=326(32-3-1)=913 x 5 => đpcm
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)
\(=3^{24}.3^2.5=3^{24}.45\) chia hết cho 45(đpcm)
a/ \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\left(64-8-1\right)=8^8.55\) chia hết cho 55
b/ \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55=7^4.11.5\) chia hết cho 11
c/ \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}.3^2.5=3^{24}.45\) chia hết cho 45
d/ \(10^9+10^8+10^7=10^7\left(10^2+10+1\right)=10^7.111=10^6.2.5.111=2.10^6.555\) chia hết cho 555
a) 810 - 89 - 88
= 88 ( 82 - 8 + 1 )
= 88 . 55
vì 55 chia hết cho 55 => 88 chia hết cho 55 => 810 - 89 - 88 chia hết cho 55
b) 76 + 75 - 74
= 74 ( 72 + 7 - 1 )
= 74 . 55
vì 55 chia hết cho 11 => 74 . 55 chia hết cho 11 => 76 + 75 - 74 chia hết cho 11
a)=\(8^8\left(8^2-8-1\right)\)
=\(8^8\cdot55\)
mà 55 chia hết cho 55 =>\(8^8\cdot55\) chia hết cho 55
Vậy .....
b) Tương tự
c)=\(3^{28}-3^{27}-3^{26}\)
Tương tự, đặt nhân tử chung
a)
Ta có :
\(81^7-27^9-9^{13}\)
= \(3^{28}-3^{27}-3^{26}\)
= \(3^{23}\left(3^5-3^4-3^3\right)\)
= \(3^{23}\cdot135=3^{23}\cdot3\cdot45\) chia hết cho 45
b)
\(5+5^2+5^3+.....+5^{120}\)
số số hạng là : (120 - 1) : 1 + 1 = 120 (số)
=>\(5+5^2+5^3+.....+5^{120}=\left(5+5^2\right)+\left(5^3+5^4\right)+......+\left(5^{119}+5^{120}\right)\)= \(5\left(1+5\right)+5^3\left(1+5\right)+....+5^{119}\left(1+5\right)\)
= \(5\cdot6+5^3\cdot6+......+5^{119}\cdot6\)
= \(6\left(5+5^3+.....+5^{119}\right)\) chia hết cho 6
\(5+5^2+5^3+.....+5^{120}\)
= \(5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+......+5^{118}\left(1+5+5^2\right)\)
= \(5\cdot31+5^4\cdot31+......+5^{118}\cdot31\)
= \(31\left(5+5^4+.......+5^{118}\right)\) chia hết cho 31
1.
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)* Lại có : \(5⋮5\Rightarrow5.3^{26}⋮5\)
Và \(3^{26}⋮3^2=9\Rightarrow3^{26}.5⋮9\)
Mặt khác, do \(\left(5,9\right)=1\Rightarrow3^{26}.5⋮5.9=45\)
Vậy \(87^7-27^9-9^{13}⋮45\left(đpcm\right)\)
b) Đặt \(A=5+5^2+...+5^{120}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{119}+5^{120}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{118}\left(5+5^2\right)\)
\(A=\left(5+5^2\right)\left(1+5^2+...+5^{118}\right)\)
\(A=30.\left(1+5^2+...+5^{118}\right)\)
Do \(30⋮6\Rightarrow30\left(1+5^2+...5^{118}\right)⋮6\left(1\right)\)
Tương tự, \(A=\left(5+5^2+5^3\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)
\(A=\left(5+5^2+5^3\right)+...+5^{117}\left(5+5^2+5^3\right)\)
\(A=\left(5+5^2+5^3\right)\left(1+...+5^{117}\right)\)
\(A=155\left(1+...+5^{117}\right)\)
Do \(155⋮31\Rightarrow155\left(1+...+5^{117}\right)⋮31\left(2\right)\)
Từ (1) và (2) => Đpcm.
tik mik nha !!!