Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
\(\frac{a}{n\left(n+a\right)}\)
=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)
=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)
Rút gọn, ta được:
\(\frac{1}{n}\)\(-\frac{1}{n+a}\)
=>đpcm
A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
A=\(\frac{1}{2}-\frac{1}{100}\)
A=\(\frac{50}{100}-\frac{1}{100}\)
A=\(\frac{49}{100}\)
1/2.3 + 1/3.4 + ....+ 1/ 99.100
= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)
= 1/2 - 1/2+1 + 1/3 - 1/3+1 +....+ 1/99 - 1/99+1
= 1/2 - 1/99
= 49/100
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)
b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
a) không biết
b) B = 1.2 + 2.3 + 3.4 + ... + 99.100
3.B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.100.101
= 99.100.101 = 999900
3.B = 999900
B = 333300
B= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/99-1/100
B=1/1-1/100
B=99/100
K cho mk nha bn, mơn
lấy máy tính bấm cũng được:\(\frac{99}{100}\)