K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

bn hay thật 

8 tháng 5 2018

Đây toán 6 nha bạn

với n =2   =>  \(n^2+4=8 loại\)

với n =3   => \(n^2+16= 24 loại\)

với n =4  =>  \(n^2+4=20 loại\)

vói n =5  =>  ( các bn tự thử) THõa mãn

Với n>5 => n có dạng 5k+1,5k+2,5k+3,5K+4

Sau đó tự thử nha


 

12 tháng 3 2018

Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

18 tháng 12 2019

ngu cút hỏi nhiều

21 tháng 5 2019

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

1 tháng 3 2020

Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !

p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn

-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài

- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí

-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí

Vậy p=7

16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số