Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}=\frac{a+\left(-c\right)}{b+\left(-d\right)}\)
Vậy ta có điều phải chứng minh
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=>x=2.5=10
y=2.3=6
Vậy x=10 và y=6
b) theo đề ta có: \(\frac{x}{5}=\frac{y}{3}\) và x + y = 16
áp dụng t/c DTSBN ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
=> \(\frac{x}{5}=2=>x=10\)
\(\frac{y}{3}=2=>y=6\)
vậy x = 10 ; y = 6
chúc bn hok tốt!!
573578769870678567362345215345645654654657657566876894637537
a ) hông hiểu
b ) \(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x}{5}=2\Rightarrow x=2.5=10\)
\(\Rightarrow\frac{y}{3}=2\Rightarrow y=2.3=6\)
Vậy x = 10 ; x = 6
em moi hc lop 5,ma bai nayem hc roi thi nhat dinh em se giai cho
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó :
\(\frac{a}{b}=1\Rightarrow a=b\)\(\left(1\right)\)
\(\frac{b}{c}=1\Rightarrow b=c\)\(\left(2\right)\)
\(\frac{c}{a}=1\Rightarrow c=a\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)suy ra \(a=b=c\left(dpcm\right)\)
Vậy \(a=b=c\)
1) a/b = b/c= c/a = a+b+c / a+b+ c = 1 (tính chất dãy tỉ số bằng nhau)
=> đpcm
2) Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
\(\frac{x}{3}=1;x=3.1=3\);\(\frac{y}{6}=1;y=6.1=6\);\(\frac{z}{10}=1;z=10.1=10\)
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)