Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)
a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 8 | -2 | 13 | -7 | 23 | -17 |
Vậy...
b, Để A tối giản <=> UCLN(20,n-3) = 1
=> n-3 không chia hết cho 20
=> n-3 khác 20k (k thuộc Z)
=> n khác 20k + 3
Vậy.....
a) Ta có :
\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên
\(\Rightarrow14\)\(⋮\)\(n-3\)
\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }
lập bảng ta có :
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1
\(\Leftrightarrow\)n - 3 không chia hết cho 14
\(\Rightarrow\)n - 3 \(\ne\)14k
\(\Rightarrow\)n \(\ne\)14k + 3
Cho A=\(\frac{2n+1}{n-3}\)+ \(\frac{3n-5}{n-3}\)- \(\frac{4n-5}{n-3}\)
Tìm n để A là phân số tối giản
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n-5}{n-3}\)
\(=\frac{n-9}{n-3}\)
Mk rút gọn rồi bạn thế 0 vào là được.
A=\(\frac{2n+1}{n-3}\)+...(đề bài)
=\(\frac{\left(2n+1\right)+\left(3n-5\right)-\left(4n-5\right)}{n-3}\)=\(\frac{n+1}{n-3}\)=1+\(\frac{4}{n-3}\)
Để A là phân số tối giản :\(\frac{4}{n-3}\)phải tối giản
Từ đây mình ko thể nhớ tiếp mong bạn nào hỗ trợ!
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên