K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)

5 tháng 5 2021

khó quá

1 tháng 5 2017

A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)

a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}

n-31-12-24-45-510-1020-20
n42517-18-213-723-17

Vậy...

b, Để A tối giản <=> UCLN(20,n-3) = 1

=> n-3 không chia hết cho 20

=> n-3 khác 20k (k thuộc Z)

=> n khác 20k + 3

Vậy.....

1 tháng 5 2017

a) Ta có : 

\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên

\(\Rightarrow14\)\(⋮\)\(n-3\)

\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }

lập bảng ta có :

n - 3 1-12-27-714-14
n425110-417-11

b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1

\(\Leftrightarrow\)n - 3 không chia hết cho 14

\(\Rightarrow\)n - 3 \(\ne\)14k

\(\Rightarrow\)\(\ne\)14k + 3

3 tháng 2 2017

\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

\(=\frac{2n+1+3n-5-4n-5}{n-3}\)

\(=\frac{n-9}{n-3}\)

Mk rút gọn rồi bạn thế 0 vào là được.

26 tháng 5 2017

A=\(\frac{2n+1}{n-3}\)+...(đề bài)

=\(\frac{\left(2n+1\right)+\left(3n-5\right)-\left(4n-5\right)}{n-3}\)=\(\frac{n+1}{n-3}\)=1+\(\frac{4}{n-3}\)

Để A là phân số tối giản :\(\frac{4}{n-3}\)phải tối giản

Từ đây mình ko thể nhớ tiếp mong bạn nào hỗ trợ!