Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vừa nhìn đề biết ngay sai
Sửa đề:
Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)
Giải:
Ta có:
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\)
\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)
\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\) vì \(P^2\left(-2\right)\ge0\)
Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)
b) Giải:
Từ giả thiết suy ra:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:
\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)
a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c
P(2) = a.\(2^2\)+b.2+c = 4a+2b+c
=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0
<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)
Nếu P(1) = P(2) => P(1).P(2) = 0
Nếu P(1) = -P(2) => P(1).P(2) < 0
Vậy P(1).P(2)\(\le\)0
b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)
\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)
Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
Bài 1:
$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$
$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$
Vậy $20092009^{10}> 2009^{20}$
Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?
Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.
Bài 4:
Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$
Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)
$\Rightarrow n\vdots 2$. Ta có:
$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$
Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.
Hay $n\vdots 4$
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\); \(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ; \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)
\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)
\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)
Bài 2:
a) Xét ΔAEF và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)
FE=DE(gt)
Do đó: ΔAEF=ΔCED(c-g-c)
⇒AF=DC(hai cạnh tương ứng)
b) Xét ΔAED và ΔCEF có
AE=CE(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)
DE=FE(gt)
Do đó: ΔAED=ΔCEF(c-g-c)
⇒AD=CF(hai cạnh tương ứng) và \(\widehat{A}=\widehat{FCE}\)(hai góc tương ứng)
mà \(\widehat{A}\) và \(\widehat{FCE}\) là hai góc ở vị trí so le trong
nên AD//CF(dấu hiệu nhận biết hai đường thẳng song song)
hay BD//CF
Ta có: AD=CF(cmt)
mà AD=BD(D là trung điểm của AB)
nên DB=CF
Xét ΔDBC và ΔCFD có
DB=CF(cmt)
\(\widehat{BDC}=\widehat{FCD}\)(so le trong, DB//FC)
DC là cạnh chung
Do đó: ΔDBC=ΔCFD(c-g-c)
⇒BC=FD(hai cạnh tương ứng)
Ta có: DE=EF(gt)
mà E nằm giữa D và F
nên E là trung điểm của DF
Ta có: BC=FD(cmt)
mà \(DE=\frac{FD}{2}\)(E là trung điểm của DF)
nên \(DE=\frac{1}{2}\cdot BC\)(đpcm1)
Ta có: ΔDBC=ΔCFD(cmt)
⇒\(\widehat{BCD}=\widehat{FDC}\)(hai góc tương ứng)
mà \(\widehat{BCD}\) và \(\widehat{FDC}\) là hai góc ở vị trí so le trong
nên DF//BC(dấu hiệu nhận biết hai đường thẳng song song)
hay DE//BC(đpcm2)
3: Ta có: P(0)=2007
\(\Leftrightarrow a\cdot0+b=2007\)
hay b=2007
Ta có: P(1)=2006
⇔\(a+b=2006\)
hay a=2006-b=2006-2007=-1
Vậy: Đa thức P có dạng là -x+2007
Sai đề: Không phải a1/a2 mà là a1^3/a2^3
Vì a22=a1a1;a23 = a2a4 nên
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
=> \(\frac{a_1}{a_2}=\frac{2a_2}{2a_3}=\frac{5a_3}{5a_4}\)
Lập phương cả 3 phân số trên, ta có:
\(\frac{a^3_1}{a^3_2}=\frac{8a^3_2}{8a^3_3}=\frac{125a^3_3}{125a^3_4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có điều phải chứng minh