K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2022

a) Vì 90^{\circ}<\alpha<180^{\circ}90<α<180 nên \cos \alpha<0cosα<0 mặt khác \sin ^{2} \alpha+\cos ^{2} \alpha=1sin2α+cos2α=1 suy ra \cos \alpha=-\sqrt{1-\sin ^{2} \alpha}=-\sqrt{1-\dfrac{1}{9}}=-\dfrac{2 \sqrt{2}}{3}cosα=1sin2α=191=322.

Do đó \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha}=\dfrac{\dfrac{1}{3}}{-\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}tanα=cosαsinα=32231=221.

b) Vì \sin ^{2} \alpha+\cos ^{2} \alpha=1sin2α+cos2α=1 nên \sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}sinα=1cos2α=194=35 và \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{2}{3}}{\dfrac{\sqrt{5}}{3}}=-\dfrac{2}{\sqrt{5}}cotα=sinαcosα=3532=52.

c) Vì \tan \gamma=-2 \sqrt{2}<0 \Rightarrow \cos \alpha<0tanγ=22<0cosα<0 mặt khác \tan ^{2} \alpha+1=\dfrac{1}{\cos ^{2} \alpha}tan2α+1=cos2α1 nên \cos \alpha=-\sqrt{\dfrac{1}{\tan ^{2}+1}}=-\sqrt{\dfrac{1}{8+1}}=-\dfrac{1}{3}cosα=tan2+11=8+11=31.
Ta có \tan \alpha=\dfrac{\sin \alpha}{\cos \alpha} \Rightarrow \sin \alpha=\tan \alpha \cdot \cos \alpha=-2 \sqrt{2} \cdot\left(-\dfrac{1}{3}\right)=\dfrac{2 \sqrt{2}}{3}tanα=cosαsinαsinα=tanαcosα=22(31)=322 \Rightarrow \cot \alpha=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{-\dfrac{1}{3}}{\dfrac{2 \sqrt{2}}{3}}=-\dfrac{1}{2 \sqrt{2}}cotα=sinαcosα=32231=221.

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2169=817.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinαcos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)(tan2α+1).

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)(2+1)=3+823(21).

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(tan\alpha,cot\alpha>0\)\(sin\alpha,cos\alpha< 0\).
\(\left\{{}\begin{matrix}tan\alpha-3cot\alpha=6\\tan\alpha cot\alpha=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\\left(6+3cot\alpha\right)cot\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\3cot^2\alpha+6cot\alpha-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\cot\alpha=\dfrac{-3+2\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=3+2\sqrt{3}\\cot\alpha=\dfrac{-3+2\sqrt{3}}{3}\end{matrix}\right.\).
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\).
Có thể đề sai.

10 tháng 5 2017

Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(tan\alpha< 0,cot\alpha< 0;cos\alpha< 0\).
Vì vậy: \(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{7}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{3}{4}:\dfrac{-\sqrt{7}}{4}=\dfrac{-3}{\sqrt{7}}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-\sqrt{7}}{3}\).
\(A=\dfrac{2tan\alpha-3cot\alpha}{cos\alpha+tan\alpha}\)\(=\dfrac{2.\dfrac{-3}{\sqrt{7}}-3.\dfrac{-\sqrt{7}}{3}}{\dfrac{-\sqrt{7}}{4}+\dfrac{-3}{\sqrt{7}}}\)
\(=\dfrac{\dfrac{-6}{\sqrt{7}}+\sqrt{7}}{\dfrac{-7-12}{4\sqrt{7}}}\)\(=\dfrac{\dfrac{-6+7}{\sqrt{7}}.4\sqrt{7}}{-19}\)\(=\dfrac{\dfrac{1}{\sqrt{7}}.4\sqrt{7}}{-19}=-\dfrac{4}{19}\).

10 tháng 5 2017

b) \(\dfrac{cos^2\alpha+cot^2\alpha}{tan\alpha-cot\alpha}=\dfrac{\left(-\dfrac{\sqrt{7}}{4}\right)^2+\left(\dfrac{-\sqrt{7}}{3}\right)^2}{\dfrac{-3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{\dfrac{7}{16}+\dfrac{7}{9}}{\dfrac{-9+7}{3\sqrt{7}}}=\dfrac{\dfrac{175}{144}}{\dfrac{-2}{3\sqrt{7}}}=\dfrac{-175}{96\sqrt{7}}\).

3 tháng 5 2021

b) \(\sin x+\cos x=\dfrac{3}{2}\)

\(\left(\sin x+\cos x\right)^2=\dfrac{1}{4}\)

\(\sin^2x+\cos^2x+2\sin x\cos x=\dfrac{1}{4}\)

\(2\sin x\cos x=-\dfrac{3}{4}=\sin2x\)

3 tháng 5 2021

ý a,

undefined

a:

2: pi/2<a<pi

=>sin a>0 và cosa<0

tan a=-2

1+tan^2a=1/cos^2a=1+4=5

=>cos^2a=1/5

=>\(cosa=-\dfrac{1}{\sqrt{5}}\)

\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)

cot a=1/tan a=-1/2

3: pi<a<3/2pi

=>cosa<0; sin a<0

1+cot^2a=1/sin^2a

=>1/sin^2a=1+9=10

=>sin^2a=1/10

=>\(sina=-\dfrac{1}{\sqrt{10}}\)

\(cosa=-\dfrac{3}{\sqrt{10}}\)

tan a=1:cota=1/3

b;

tan x=-2

=>sin x=-2*cosx

\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)

\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)

2: tan x=-2 

=>sin x=-2*cosx

\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

a)

\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)

\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)

\(=2\sin ^2a\)

b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)

\(=1+\cos ^2a-1=\cos ^2a\)

\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)

c)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)

\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2018

d)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)

\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

f)

\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)

\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)

\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)

30 tháng 3 2017

Hỏi đáp Toán

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).

10 tháng 5 2017

b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).