K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

\(x^3+y^3=\left(x+y\right).\left(x^2-xy+y^2\right)=1.\left(x^2+y^2+2xy-3xy\right)\)

\(=1^2-3xy\)

=1+3=4

câu b tương tự

20 tháng 7 2019

Ta có: x3 - y3 

= (x - y)(x2 - xy + y2)

= 1.(x2 - 2xy + y2 + xy)

= (x2 - 2xy + y2) + xy

= (x - y)2 + 6

= 12 + 6

= 1 + 6 = 7

Vậy x3 - y3 = 7

ta có

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^2+y^2-2xy+3xy\)

\(=\left(x-y\right)^2+3xy\)

\(=1+18=19\)

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(=\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)\)

Thay \(x+y=1;x.y=-1\)ta có:

\(1\left(\left(1\right)^2-3\left(-1\right)\right)=1\left(1+3\right)=4\)

19 tháng 7 2019

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

Thay x + y = 1 và xy = -1 vào ta có : 

\(x^3+y^3=1.\left[1^2-3\left(-1\right)\right]=1+3=4\)

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9 

22 tháng 7 2021

1) x3 + y3 = ( x + y )3 - 3xy( x + y ) = 125 - 90 = 35

2) E = 2( a + b )( a2 - ab + b2 ) - 3a2 - 3b2 = 2a2 - 2ab + 2b2 - 3a2 - 3b2 = -( a + b )2 = -1

22 tháng 7 2021

1) Ta có x3 + y3 = (x + y)3 - 3xy(x + y) = 53 - 3.5.6 = 35

2) Ta có E = 2(a3 + b3) - 3(a2 + b2

= 2(a + b)3 - 6ab(a + b) - 3[(a + b)2 - 2ab] 

= 2.13 - 6ab.1 - 3.12 + 6ab

= 2 - 3 = -1 

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

19 tháng 8 2020

Bài 1: 

a) (x+y)2=92=81

=> x2+2xy+y2=81

=> x2+2.14+y2=81

=> x2+y2=53

=> x2-2xy+y2=81-2.14=25

=> (x-y)2=25

=> x-y=5 hoặc x-y=-5

b) Câu a đã tính được x2+y2=53

c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351

Bài 2: 

Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=1

\(\Rightarrow1^2-4.1+1=-2\)

Bài 3: 

Ta có: (x+y)3=x3+3x2y+3xy2+y3 

= x3+y3+3xy(x+y)

Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1

Bài 4: 

Ta có: \(\left(x+y\right)^2=4^2=16\)

\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)

\(\Rightarrow2xy=6\Rightarrow xy=3\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)

\(=4.7=28\)

Bài 5: 

Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)

Mấy bài này đầu hè làm hết rồi:))

19 tháng 8 2020

Bài 1:

a) \(xy=14\Rightarrow x=\frac{14}{y}\)

Thay vào: \(\frac{14}{y}+y=9\)

\(\Leftrightarrow y^2+14-9y=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)

+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)

b) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^2=81\)

\(\Leftrightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)

c) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^3=9^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)

\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)

10 tháng 9 2017

1) ta có

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=x^2+y^2-2xy+3xy=\) \(\left(x-y\right)^2+3xy=1+18=19\)