K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

BT1: Chứng minh 2 biểu thức sau không bằng nhau:a) A=3(x+y)+5x-y và B=x+yb) M=(x-1)^2 và N=x^2+1c) P=x^2-y^2 và Q=x^2+y^2BT2: Tìm giá trị lớn nhất của các biểu thức:a) (x-2012)^2                      b) (5x-2)^2+100c) (2x+1)^2-99                    d) (x^2-36)^6+ly-5l+2015BT3: Tính giá trị biểu thức:  N=3x^2-3xy+2y^2 tại lxl=1; lyl=3BT4: Tìm giá trị của biến số để giá trị của mỡi biểu thức sau bằng 0:a) 9y^2-36...
Đọc tiếp

BT1: Chứng minh 2 biểu thức sau không bằng nhau:

a) A=3(x+y)+5x-y và B=x+y

b) M=(x-1)^2 và N=x^2+1

c) P=x^2-y^2 và Q=x^2+y^2

BT2: Tìm giá trị lớn nhất của các biểu thức:

a) (x-2012)^2                      b) (5x-2)^2+100

c) (2x+1)^2-99                    d) (x^2-36)^6+ly-5l+2015

BT3: Tính giá trị biểu thức:  N=3x^2-3xy+2y^2 tại lxl=1; lyl=3

BT4: Tìm giá trị của biến số để giá trị của mỡi biểu thức sau bằng 0:

a) 9y^2-36                                  c) lx-2l+4

b) (x-1)(x+1)(x^2+1/2)                  d) (2y+m)(3y-m) với m là hằng số

BT5: Tính giá trị nhỏ nhất của các biểu thức sau:

a) (x-3)^2+(y-1)^2+5

b) lx-3l+x^2+y^2+1

c) lx-100l+(x-y)^2+100

BT6: Tính giá trị của các biểu thức:

a) x^3-6x^2-9x-3 với x=-2/3                        b)  2a-5b/a-3b với a/b=3/4

c) 3a-b/2a+7 +3b-a/2b-7 với a-b=7 (a;b\(\ne\)-3,5)

BT7: Cho 2 biểu thức: P9x)=x^4-2ax^2+a^2 ; Q(x)=x^2+(3a+1)+a^2.

Xác định giá trị hằng số a sao cho giá trị P(x0 tại x=1 bằng giá trị của Q(x) tại x=3

BT8*: Với giá trị nào của biến số thì biểu thức sau có giá trị lớn nhất:

a) P(x)=3/(x-2)^2+1                               b) Q(x,y)=3-(x+1)^2-(y-2)^2

BT9*: Với giá trị nào của biến số thì biểu thức sau có giá trị nhỏ nhất:

a) P(x,y)=(x-1)^2+(y+1/2)^2-10               b) Q(x)=29x-1)^2+1/(x-1)^2+2

(Bài đánh dấu "*" là bài khó)

Các bạn làm ơn giúp mình. Mình cần gấp T-T

Các bạn muốn làm bài nào trong 9 bài trên cũng được, mình sẽ tích cho.

 

 

0
10 tháng 8 2018

b. + Vì \(|6-2x|\ge0\)\(\forall x\)

\(\Rightarrow\)\(|6-2x|-5\ge0-5\)\(\forall x\)

\(\Rightarrow\)B\(\ge\)-5 \(\forall x\)

Vậy GTNN của B= -5 \(\Leftrightarrow\)6-2x=0

                                    \(\Leftrightarrow\)2x=6

                                   \(\Leftrightarrow\)x=3

+ Vì -\(|6-2x|\le0\forall x\)

\(\Rightarrow\)\(|6-2x|-5\le0+5\forall x\)

\(\Rightarrow B\le5\forall x\)

Vậy GTLN của B= 5 \(\Leftrightarrow6-2x=0\)

                                \(\Leftrightarrow2x=1\)

                                \(\Leftrightarrow x=\frac{1}{2}\)

c,+ Vì \(|x+1|\ge0\forall x\)

\(\Rightarrow\)\(3-|x+1|\ge3-0\forall x\)

\(\Rightarrow C\ge3\forall x\)

Vậy GTNN của C=3 \(\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

+ Vì \(-|x+1|\le0\forall x\)

\(\Rightarrow3-|x+1|\le3+0\forall x\)

\(\Rightarrow C\le3\forall x\)

Vậy GTLN của \(C=3\Leftrightarrow x+1=0\)

                                     \(\Leftrightarrow x=-1\)

Mình chỉ làm vậy thôi nhé!

10 tháng 8 2018

THANKS  BẠN NHIỀU NHA